Step
*
1
2
1
2
1
1
of Lemma
BB-problem-21
.....assertion.....
1. a : ℝ
2. b : {b:ℝ| a ≤ b}
3. f : {f:[a, b] ⟶ℝ| ifun(f;[a, b])}
4. g : {f:[a, b] ⟶ℝ| ifun(f;[a, b])}
5. ∀x:ℝ. ((x ∈ [a, b])
⇒ (r0 ≤ g[x]))
6. e : {e:ℝ| r0 < e}
7. rmin(a;b) = a
8. rmax(a;b) = b
9. λc.(∫ f[x] * g[x] dx on [a, b] - f[c] * ∫ g[x] dx on [a, b]) ∈ {f:[a, b] ⟶ℝ| ifun(f;[a, b])}
10. F : {f:[a, b] ⟶ℝ| ifun(f;[a, b])}
11. (λc.(∫ f[x] * g[x] dx on [a, b] - f[c] * ∫ g[x] dx on [a, b])) = F ∈ {f:[a, b] ⟶ℝ| ifun(f;[a, b])}
12. r0 < ||F c||_c:[a, b]
13. ifun(λc.||(f[x] - f[c]) * g[x]||_x:[a, b];[a, b])
14. ∀c:{r:ℝ| r ∈ [a, b]} . ((F c) = ∫ (f[x] - f[c]) * g[x] dx on [a, b])
⊢ ||F c||_c:[a, b] ≤ (||||(f[x] - f[c]) * g[x]||_x:[a, b]||_c:[a, b] * (b - a))
BY
{ ((BLemma `I-norm-rleq` THEN Auto)
THEN (Assert ||(f[x] - f[c]) * g[x]||_x:[a, b] ≤ ||||(f[x] - f[c]) * g[x]||_x:[a, b]||_c:[a, b] BY
((InstLemma `I-norm-bound` [⌜[a, b]⌝;⌜λ2c.||(f[x] - f[c]) * g[x]||_x:[a, b]⌝;⌜c⌝]⋅ THENA Auto)
THEN RWO "rabs-of-nonneg" (-1)
THEN Auto))
) }
1
1. a : ℝ
2. b : {b:ℝ| a ≤ b}
3. f : {f:[a, b] ⟶ℝ| ifun(f;[a, b])}
4. g : {f:[a, b] ⟶ℝ| ifun(f;[a, b])}
5. ∀x:ℝ. ((x ∈ [a, b])
⇒ (r0 ≤ g[x]))
6. e : {e:ℝ| r0 < e}
7. rmin(a;b) = a
8. rmax(a;b) = b
9. λc.(∫ f[x] * g[x] dx on [a, b] - f[c] * ∫ g[x] dx on [a, b]) ∈ {f:[a, b] ⟶ℝ| ifun(f;[a, b])}
10. F : {f:[a, b] ⟶ℝ| ifun(f;[a, b])}
11. (λc.(∫ f[x] * g[x] dx on [a, b] - f[c] * ∫ g[x] dx on [a, b])) = F ∈ {f:[a, b] ⟶ℝ| ifun(f;[a, b])}
12. r0 < ||F c||_c:[a, b]
13. ifun(λc.||(f[x] - f[c]) * g[x]||_x:[a, b];[a, b])
14. ∀c:{r:ℝ| r ∈ [a, b]} . ((F c) = ∫ (f[x] - f[c]) * g[x] dx on [a, b])
15. c : {r:ℝ| r ∈ [a, b]}
16. ||(f[x] - f[c]) * g[x]||_x:[a, b] ≤ ||||(f[x] - f[c]) * g[x]||_x:[a, b]||_c:[a, b]
⊢ |F c| ≤ (||||(f[x] - f[c]) * g[x]||_x:[a, b]||_c:[a, b] * (b - a))
Latex:
Latex:
.....assertion.....
1. a : \mBbbR{}
2. b : \{b:\mBbbR{}| a \mleq{} b\}
3. f : \{f:[a, b] {}\mrightarrow{}\mBbbR{}| ifun(f;[a, b])\}
4. g : \{f:[a, b] {}\mrightarrow{}\mBbbR{}| ifun(f;[a, b])\}
5. \mforall{}x:\mBbbR{}. ((x \mmember{} [a, b]) {}\mRightarrow{} (r0 \mleq{} g[x]))
6. e : \{e:\mBbbR{}| r0 < e\}
7. rmin(a;b) = a
8. rmax(a;b) = b
9. \mlambda{}c.(\mint{} f[x] * g[x] dx on [a, b] - f[c] * \mint{} g[x] dx on [a, b]) \mmember{} \{f:[a, b] {}\mrightarrow{}\mBbbR{}| ifun(f;[a, b])\}
10. F : \{f:[a, b] {}\mrightarrow{}\mBbbR{}| ifun(f;[a, b])\}
11. (\mlambda{}c.(\mint{} f[x] * g[x] dx on [a, b] - f[c] * \mint{} g[x] dx on [a, b])) = F
12. r0 < ||F c||\_c:[a, b]
13. ifun(\mlambda{}c.||(f[x] - f[c]) * g[x]||\_x:[a, b];[a, b])
14. \mforall{}c:\{r:\mBbbR{}| r \mmember{} [a, b]\} . ((F c) = \mint{} (f[x] - f[c]) * g[x] dx on [a, b])
\mvdash{} ||F c||\_c:[a, b] \mleq{} (||||(f[x] - f[c]) * g[x]||\_x:[a, b]||\_c:[a, b] * (b - a))
By
Latex:
((BLemma `I-norm-rleq` THEN Auto)
THEN (Assert ||(f[x] - f[c]) * g[x]||\_x:[a, b] \mleq{} ||||(f[x] - f[c]) * g[x]||\_x:[a, b]||\_c:[a, b] BY
((InstLemma `I-norm-bound` [\mkleeneopen{}[a, b]\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}c.||(f[x] - f[c]) * g[x]||\_x:[a, b]\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN RWO "rabs-of-nonneg" (-1)
THEN Auto))
)
Home
Index