Step
*
1
1
2
1
1
1
of Lemma
Legendre-roots-sq
1. n : ℤ
2. z : i:ℕn - 1 ⟶ {x:ℝ| 
                    (x ∈ (r(-1), r1))
                    ∧ (Legendre(n - 1;x) = r0)
                    ∧ (r0 < (r((-1)^(n - 1 - i)) * Legendre((n - 1) + 1;x)))} 
3. ∀i:ℕn - 2. ((z i) < (z (i + 1)))
4. 2 ≤ n
5. ∀a,b:ℝ.  rational_fun_zero(λx.ratLegendre(n;x);a;b) ∈ {c:ℝ| (c ∈ (a, b)) ∧ (Legendre(n;c) = r0)}  supposing (a < b) ∧\000C ((Legendre(n;a) * Legendre(n;b)) < r0)
6. λi.rational_fun_zero(λx.ratLegendre(n;x);if i=0 then r(-1) else (z (i - 1));if i=n - 1 then r1 else (z i)) ∈ i:ℕn
   ⟶ {x:ℝ| 
       (x ∈ (if i=0 then r(-1) else (z (i - 1)), if i=n - 1 then r1 else (z i)))
       ∧ (Legendre(n;x) = r0)
       ∧ (r0 < (r((-1)^(n - i)) * Legendre(n + 1;x)))} 
7. i : ℕn
⊢ (λi.rational_fun_zero(λx.ratLegendre(n;x);if i=0 then r(-1) else (z (i - 1));if i=n - 1 then r1 else (z i))) i
  ∈ {x:ℝ| (x ∈ (r(-1), r1)) ∧ (Legendre(n;x) = r0) ∧ (r0 < (r((-1)^(n - i)) * Legendre(n + 1;x)))} 
BY
{ SubsumeC ⌜{x:ℝ| 
             (x ∈ (if i=0 then r(-1) else (z (i - 1)), if i=n - 1 then r1 else (z i)))
             ∧ (Legendre(n;x) = r0)
             ∧ (r0 < (r((-1)^(n - i)) * Legendre(n + 1;x)))} ⌝⋅ }
1
1. n : ℤ
2. z : i:ℕn - 1 ⟶ {x:ℝ| 
                    (x ∈ (r(-1), r1))
                    ∧ (Legendre(n - 1;x) = r0)
                    ∧ (r0 < (r((-1)^(n - 1 - i)) * Legendre((n - 1) + 1;x)))} 
3. ∀i:ℕn - 2. ((z i) < (z (i + 1)))
4. 2 ≤ n
5. ∀a,b:ℝ.  rational_fun_zero(λx.ratLegendre(n;x);a;b) ∈ {c:ℝ| (c ∈ (a, b)) ∧ (Legendre(n;c) = r0)}  supposing (a < b) ∧\000C ((Legendre(n;a) * Legendre(n;b)) < r0)
6. λi.rational_fun_zero(λx.ratLegendre(n;x);if i=0 then r(-1) else (z (i - 1));if i=n - 1 then r1 else (z i)) ∈ i:ℕn
   ⟶ {x:ℝ| 
       (x ∈ (if i=0 then r(-1) else (z (i - 1)), if i=n - 1 then r1 else (z i)))
       ∧ (Legendre(n;x) = r0)
       ∧ (r0 < (r((-1)^(n - i)) * Legendre(n + 1;x)))} 
7. i : ℕn
⊢ (λi.rational_fun_zero(λx.ratLegendre(n;x);if i=0 then r(-1) else (z (i - 1));if i=n - 1 then r1 else (z i))) i
  ∈ {x:ℝ| 
     (x ∈ (if i=0 then r(-1) else (z (i - 1)), if i=n - 1 then r1 else (z i)))
     ∧ (Legendre(n;x) = r0)
     ∧ (r0 < (r((-1)^(n - i)) * Legendre(n + 1;x)))} 
2
1. n : ℤ
2. z : i:ℕn - 1 ⟶ {x:ℝ| 
                    (x ∈ (r(-1), r1))
                    ∧ (Legendre(n - 1;x) = r0)
                    ∧ (r0 < (r((-1)^(n - 1 - i)) * Legendre((n - 1) + 1;x)))} 
3. ∀i:ℕn - 2. ((z i) < (z (i + 1)))
4. 2 ≤ n
5. ∀a,b:ℝ.  rational_fun_zero(λx.ratLegendre(n;x);a;b) ∈ {c:ℝ| (c ∈ (a, b)) ∧ (Legendre(n;c) = r0)}  supposing (a < b) ∧\000C ((Legendre(n;a) * Legendre(n;b)) < r0)
6. λi.rational_fun_zero(λx.ratLegendre(n;x);if i=0 then r(-1) else (z (i - 1));if i=n - 1 then r1 else (z i)) ∈ i:ℕn
   ⟶ {x:ℝ| 
       (x ∈ (if i=0 then r(-1) else (z (i - 1)), if i=n - 1 then r1 else (z i)))
       ∧ (Legendre(n;x) = r0)
       ∧ (r0 < (r((-1)^(n - i)) * Legendre(n + 1;x)))} 
7. i : ℕn
8. ((λi.rational_fun_zero(λx.ratLegendre(n;x);if i=0 then r(-1) else (z (i - 1));if i=n - 1 then r1 else (z i))) i)
= ((λi.rational_fun_zero(λx.ratLegendre(n;x);if i=0 then r(-1) else (z (i - 1));if i=n - 1 then r1 else (z i))) i)
∈ {x:ℝ| 
   (x ∈ (if i=0 then r(-1) else (z (i - 1)), if i=n - 1 then r1 else (z i)))
   ∧ (Legendre(n;x) = r0)
   ∧ (r0 < (r((-1)^(n - i)) * Legendre(n + 1;x)))} 
⊢ {x:ℝ| 
   (x ∈ (if i=0 then r(-1) else (z (i - 1)), if i=n - 1 then r1 else (z i)))
   ∧ (Legendre(n;x) = r0)
   ∧ (r0 < (r((-1)^(n - i)) * Legendre(n + 1;x)))}  ⊆r {x:ℝ| 
                                                         (x ∈ (r(-1), r1))
                                                         ∧ (Legendre(n;x) = r0)
                                                         ∧ (r0 < (r((-1)^(n - i)) * Legendre(n + 1;x)))} 
Latex:
Latex:
1.  n  :  \mBbbZ{}
2.  z  :  i:\mBbbN{}n  -  1  {}\mrightarrow{}  \{x:\mBbbR{}| 
                                        (x  \mmember{}  (r(-1),  r1))
                                        \mwedge{}  (Legendre(n  -  1;x)  =  r0)
                                        \mwedge{}  (r0  <  (r((-1)\^{}(n  -  1  -  i))  *  Legendre((n  -  1)  +  1;x)))\} 
3.  \mforall{}i:\mBbbN{}n  -  2.  ((z  i)  <  (z  (i  +  1)))
4.  2  \mleq{}  n
5.  \mforall{}a,b:\mBbbR{}.
          rational\_fun\_zero(\mlambda{}x.ratLegendre(n;x);a;b)  \mmember{}  \{c:\mBbbR{}|  (c  \mmember{}  (a,  b))  \mwedge{}  (Legendre(n;c)  =  r0)\}   
          supposing  (a  <  b)  \mwedge{}  ((Legendre(n;a)  *  Legendre(n;b))  <  r0)
6.  \mlambda{}i.rational\_fun\_zero(\mlambda{}x.ratLegendre(n;x);if  i=0  then  r(-1)  else  (z  (i  -  1));if  i=n  -  1
                                                                                                                                                              then  r1
                                                                                                                                                              else  (z  i))  \mmember{}  i:\mBbbN{}n
      {}\mrightarrow{}  \{x:\mBbbR{}| 
              (x  \mmember{}  (if  i=0  then  r(-1)  else  (z  (i  -  1)),  if  i=n  -  1  then  r1  else  (z  i)))
              \mwedge{}  (Legendre(n;x)  =  r0)
              \mwedge{}  (r0  <  (r((-1)\^{}(n  -  i))  *  Legendre(n  +  1;x)))\} 
7.  i  :  \mBbbN{}n
\mvdash{}  (\mlambda{}i.rational\_fun\_zero(\mlambda{}x.ratLegendre(n;x);if  i=0  then  r(-1)  else  (z  (i  -  1));if  i=n  -  1
                                                                                                                                                              then  r1
                                                                                                                                                              else  (z  i))) 
    i  \mmember{}  \{x:\mBbbR{}| 
              (x  \mmember{}  (r(-1),  r1))  \mwedge{}  (Legendre(n;x)  =  r0)  \mwedge{}  (r0  <  (r((-1)\^{}(n  -  i))  *  Legendre(n  +  1;x)))\} 
By
Latex:
SubsumeC  \mkleeneopen{}\{x:\mBbbR{}| 
                      (x  \mmember{}  (if  i=0  then  r(-1)  else  (z  (i  -  1)),  if  i=n  -  1  then  r1  else  (z  i)))
                      \mwedge{}  (Legendre(n;x)  =  r0)
                      \mwedge{}  (r0  <  (r((-1)\^{}(n  -  i))  *  Legendre(n  +  1;x)))\}  \mkleeneclose{}\mcdot{}
Home
Index