Step
*
4
1
of Lemma
Taylor-remainder-as-integral
1. I : Interval
2. iproper(I)
3. a : ℝ
4. a ∈ I
5. b : ℝ
6. b ∈ I
7. [rmin(a;b), rmax(a;b)] ⊆ I
8. n : ℤ
9. 0 < n
10. F : ℕ(n - 1) + 2 ⟶ I ⟶ℝ
11. x : ∀k:ℕ(n - 1) + 2. ∀x,y:{a:ℝ| a ∈ I} . ((x = y)
⇒ ((F k x) = (F k y)))
12. x1 : finite-deriv-seq(I;(n - 1) + 1;i,x.F i x)
13. x2 : {x:ℝ| x ∈ [rmin(a;b), rmax(a;b)]}
14. y : {x:ℝ| x ∈ [rmin(a;b), rmax(a;b)]}
15. x2 = y
⊢ ((F n x2/r((n - 1)!)) * b - y^n - 1) = ((F n y/r((n - 1)!)) * b - y^n - 1)
BY
{ ((Assert (F n x2) = (F n y) BY Auto) THEN RWO "-1" 0 THEN Auto) }
Latex:
Latex:
1. I : Interval
2. iproper(I)
3. a : \mBbbR{}
4. a \mmember{} I
5. b : \mBbbR{}
6. b \mmember{} I
7. [rmin(a;b), rmax(a;b)] \msubseteq{} I
8. n : \mBbbZ{}
9. 0 < n
10. F : \mBbbN{}(n - 1) + 2 {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}
11. x : \mforall{}k:\mBbbN{}(n - 1) + 2. \mforall{}x,y:\{a:\mBbbR{}| a \mmember{} I\} . ((x = y) {}\mRightarrow{} ((F k x) = (F k y)))
12. x1 : finite-deriv-seq(I;(n - 1) + 1;i,x.F i x)
13. x2 : \{x:\mBbbR{}| x \mmember{} [rmin(a;b), rmax(a;b)]\}
14. y : \{x:\mBbbR{}| x \mmember{} [rmin(a;b), rmax(a;b)]\}
15. x2 = y
\mvdash{} ((F n x2/r((n - 1)!)) * b - y\^{}n - 1) = ((F n y/r((n - 1)!)) * b - y\^{}n - 1)
By
Latex:
((Assert (F n x2) = (F n y) BY Auto) THEN RWO "-1" 0 THEN Auto)
Home
Index