Step
*
3
1
of Lemma
arctan_wf1
1. ∀x:ℝ. (r0 < (r1 + x^2))
2. x : ℝ
3. arctan(x) ∈ {y:ℝ| y = full-arctan(x)}
4. arctan(x) = arctan(x) ∈ {y:ℝ| y = full-arctan(x)}
⊢ {y:ℝ| y = full-arctan(x)} ⊆r {y:ℝ| y = arctangent(x)}
BY
{ ((D 0 THENA Auto) THEN D -1 THEN MemTypeCD THEN Auto THEN (RWO "-1" 0 THENA Auto)) }
1
1. ∀x:ℝ. (r0 < (r1 + x^2))
2. x : ℝ
3. arctan(x) ∈ {y:ℝ| y = full-arctan(x)}
4. arctan(x) = arctan(x) ∈ {y:ℝ| y = full-arctan(x)}
5. x1 : ℝ
6. x1 = full-arctan(x)
⊢ full-arctan(x) = arctangent(x)
Latex:
Latex:
1. \mforall{}x:\mBbbR{}. (r0 < (r1 + x\^{}2))
2. x : \mBbbR{}
3. arctan(x) \mmember{} \{y:\mBbbR{}| y = full-arctan(x)\}
4. arctan(x) = arctan(x)
\mvdash{} \{y:\mBbbR{}| y = full-arctan(x)\} \msubseteq{}r \{y:\mBbbR{}| y = arctangent(x)\}
By
Latex:
((D 0 THENA Auto) THEN D -1 THEN MemTypeCD THEN Auto THEN (RWO "-1" 0 THENA Auto))
Home
Index