Step
*
1
1
1
1
of Lemma
fun-converges-to-integral
.....assertion.....
1. I : Interval
2. f : ℕ ⟶ I ⟶ℝ
3. F : I ⟶ℝ
4. lim n→∞.f[n;x] = λy.F[y] for x ∈ I
5. ∀n:ℕ. ∀x,y:{t:ℝ| t ∈ I} . ((x = y)
⇒ (f[n;x] = f[n;y]))
6. a : ℝ
7. a ∈ I
8. ∀x:ℝ. ((x ∈ I)
⇒ lim n→∞.f[n;x] = F[x])
9. x : ℝ
10. x ∈ I
11. y : ℝ
12. y ∈ I
13. x = y
14. lim n→∞.f[n;x] = F[x]
15. lim n→∞.f[n;y] = F[y]
⊢ lim n→∞.f[n;x] = F[y]
BY
{ (MoveToConcl (-1) THEN BLemma `converges-to_functionality` THEN Auto) }
Latex:
Latex:
.....assertion.....
1. I : Interval
2. f : \mBbbN{} {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}
3. F : I {}\mrightarrow{}\mBbbR{}
4. lim n\mrightarrow{}\minfty{}.f[n;x] = \mlambda{}y.F[y] for x \mmember{} I
5. \mforall{}n:\mBbbN{}. \mforall{}x,y:\{t:\mBbbR{}| t \mmember{} I\} . ((x = y) {}\mRightarrow{} (f[n;x] = f[n;y]))
6. a : \mBbbR{}
7. a \mmember{} I
8. \mforall{}x:\mBbbR{}. ((x \mmember{} I) {}\mRightarrow{} lim n\mrightarrow{}\minfty{}.f[n;x] = F[x])
9. x : \mBbbR{}
10. x \mmember{} I
11. y : \mBbbR{}
12. y \mmember{} I
13. x = y
14. lim n\mrightarrow{}\minfty{}.f[n;x] = F[x]
15. lim n\mrightarrow{}\minfty{}.f[n;y] = F[y]
\mvdash{} lim n\mrightarrow{}\minfty{}.f[n;x] = F[y]
By
Latex:
(MoveToConcl (-1) THEN BLemma `converges-to\_functionality` THEN Auto)
Home
Index