Nuprl Lemma : rabs*_functionality
∀[x,y:ℝ*].  (x = y ⇒ |x| = |y|)
Proof
Definitions occuring in Statement : 
rabs*: |x|, 
req*: x = y, 
real*: ℝ*, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
rabs*: |x|, 
member: t ∈ T, 
uimplies: b supposing a, 
prop: ℙ, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rfun*_functionality, 
rabs_wf, 
real_wf, 
req_witness, 
req_wf, 
req*_wf, 
real*_wf, 
req_weakening, 
req_functionality, 
rabs_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[x,y:\mBbbR{}*].    (x  =  y  {}\mRightarrow{}  |x|  =  |y|)
Date html generated:
2018_05_22-PM-03_15_25
Last ObjectModification:
2017_10_06-PM-03_45_33
Theory : reals_2
Home
Index