Nuprl Lemma : rfun*_functionality
∀[f:ℝ ⟶ ℝ]. ∀[x,y:ℝ*].  ((∀[a,b:ℝ].  (f a) = (f b) supposing a = b) ⇒ x = y ⇒ f*(x) = f*(y))
Proof
Definitions occuring in Statement : 
rfun*: f*(x), 
req*: x = y, 
real*: ℝ*, 
req: x = y, 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
req*: x = y, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
rfun*: f*(x), 
nat: ℕ, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
uimplies: b supposing a, 
guard: {T}, 
real*: ℝ*
Lemmas referenced : 
int_upper_wf, 
all_wf, 
req_wf, 
rfun*_wf, 
real_wf, 
int_upper_subtype_nat, 
req*_wf, 
uall_wf, 
isect_wf, 
real*_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
hypothesisEquality, 
cut, 
hypothesis, 
dependent_functionElimination, 
sqequalRule, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
functionEquality, 
independent_isectElimination
Latex:
\mforall{}[f:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x,y:\mBbbR{}*].    ((\mforall{}[a,b:\mBbbR{}].    (f  a)  =  (f  b)  supposing  a  =  b)  {}\mRightarrow{}  x  =  y  {}\mRightarrow{}  f*(x)  =  f*(y))
Date html generated:
2018_05_22-PM-03_15_09
Last ObjectModification:
2017_10_06-PM-02_25_58
Theory : reals_2
Home
Index