Nuprl Lemma : rcos_wf1
∀[x:ℝ]. (rcos(x) ∈ {y:ℝ| cosine(x) = y} )
Proof
Definitions occuring in Statement :
rcos: rcos(x)
,
cosine: cosine(x)
,
req: x = y
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
set: {x:A| B[x]}
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
so_lambda: λ2x.t[x]
,
rfun: I ⟶ℝ
,
prop: ℙ
,
so_apply: x[s]
,
implies: P
⇒ Q
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
,
nat: ℕ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
rcos: rcos(x)
,
subtype_rel: A ⊆r B
,
guard: {T}
,
squash: ↓T
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
approx-arg_wf,
cosine_wf,
real_wf,
i-member_wf,
riiint_wf,
rminus_wf,
sine_wf,
req_functionality,
rminus_functionality,
sine_functionality,
req_weakening,
req_wf,
derivative-cosine,
false_wf,
le_wf,
subtype_rel_sets,
req_inversion,
rleq_wf,
squash_wf,
true_wf,
rabs-rminus,
int-to-real_wf,
iff_weakening_equal,
rabs-sine-rleq
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
sqequalRule,
lambdaEquality,
isectElimination,
setElimination,
rename,
hypothesisEquality,
hypothesis,
setEquality,
because_Cache,
independent_functionElimination,
lambdaFormation,
independent_isectElimination,
productElimination,
dependent_set_memberEquality,
natural_numberEquality,
independent_pairFormation,
equalityTransitivity,
equalitySymmetry,
applyEquality,
axiomEquality,
imageElimination,
imageMemberEquality,
baseClosed,
universeEquality
Latex:
\mforall{}[x:\mBbbR{}]. (rcos(x) \mmember{} \{y:\mBbbR{}| cosine(x) = y\} )
Date html generated:
2017_01_09-AM-09_10_43
Last ObjectModification:
2016_11_25-PM-09_54_37
Theory : reals_2
Home
Index