Step * 1 1 2 1 2 of Lemma rexp-rlog


1. : ℝ
2. r0 < x
3. x < e^rlog(x)
4. x_∫-e^rlog(x) (r1/t) dt r0
5. λt.(r1/t) ∈ {f:(r0, ∞) ⟶ℝ| ∀a,b:{x:ℝr0 < x} .  ((a b)  (f[a] f[b]))} 
6. ∀[a,b:{x:ℝx ∈ (r0, ∞)} ].  a_∫-(r1/x) dx = ∫ (r1/x) dx on [a, b] supposing a ≤ b
⊢ False
BY
((InstHyp [⌜x⌝;⌜e^rlog(x)⌝(-1)⋅ THENA Auto) THEN Thin (-2)) }

1
1. : ℝ
2. r0 < x
3. x < e^rlog(x)
4. x_∫-e^rlog(x) (r1/t) dt r0
5. λt.(r1/t) ∈ {f:(r0, ∞) ⟶ℝ| ∀a,b:{x:ℝr0 < x} .  ((a b)  (f[a] f[b]))} 
6. x_∫-e^rlog(x) (r1/x) dx = ∫ (r1/x) dx on [x, e^rlog(x)]
⊢ False


Latex:


Latex:

1.  x  :  \mBbbR{}
2.  r0  <  x
3.  x  <  e\^{}rlog(x)
4.  x\_\mint{}\msupminus{}e\^{}rlog(x)  (r1/t)  dt  =  r0
5.  \mlambda{}t.(r1/t)  \mmember{}  \{f:(r0,  \minfty{})  {}\mrightarrow{}\mBbbR{}|  \mforall{}a,b:\{x:\mBbbR{}|  r0  <  x\}  .    ((a  =  b)  {}\mRightarrow{}  (f[a]  =  f[b]))\} 
6.  \mforall{}[a,b:\{x:\mBbbR{}|  x  \mmember{}  (r0,  \minfty{})\}  ].    a\_\mint{}\msupminus{}b  (r1/x)  dx  =  \mint{}  (r1/x)  dx  on  [a,  b]  supposing  a  \mleq{}  b
\mvdash{}  False


By


Latex:
((InstHyp  [\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}e\^{}rlog(x)\mkleeneclose{}]  (-1)\mcdot{}  THENA  Auto)  THEN  Thin  (-2))




Home Index