Nuprl Lemma : rneq-sinh
∀x,y:ℝ.  (sinh(x) ≠ sinh(y) ⇒ x ≠ y)
Proof
Definitions occuring in Statement : 
sinh: sinh(x), 
rneq: x ≠ y, 
real: ℝ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
prop: ℙ
Lemmas referenced : 
rneq-function, 
sinh_wf, 
real_wf, 
req_functionality, 
sinh_functionality, 
req_weakening, 
req_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}x,y:\mBbbR{}.    (sinh(x)  \mneq{}  sinh(y)  {}\mRightarrow{}  x  \mneq{}  y)
Date html generated:
2017_10_04-PM-10_46_45
Last ObjectModification:
2017_06_26-PM-01_52_44
Theory : reals_2
Home
Index