Nuprl Lemma : sinh_wf
∀[x:ℝ]. (sinh(x) ∈ ℝ)
Proof
Definitions occuring in Statement :
sinh: sinh(x)
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
subtype_rel: A ⊆r B
,
prop: ℙ
,
false: False
,
guard: {T}
,
all: ∀x:A. B[x]
,
sq_type: SQType(T)
,
uimplies: b supposing a
,
implies: P
⇒ Q
,
not: ¬A
,
nequal: a ≠ b ∈ T
,
true: True
,
int_nzero: ℤ-o
,
sinh: sinh(x)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
rminus_wf,
rexp_wf,
req_wf,
real_wf,
expr_wf,
rsub_wf,
nequal_wf,
true_wf,
equal-wf-base,
int_subtype_base,
subtype_base_sq,
int-rdiv_wf
Rules used in proof :
axiomEquality,
because_Cache,
setEquality,
rename,
setElimination,
lambdaEquality,
applyEquality,
hypothesisEquality,
baseClosed,
voidElimination,
independent_functionElimination,
equalitySymmetry,
equalityTransitivity,
dependent_functionElimination,
hypothesis,
independent_isectElimination,
intEquality,
cumulativity,
instantiate,
lambdaFormation,
addLevel,
natural_numberEquality,
dependent_set_memberEquality,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
sqequalRule,
cut,
introduction,
isect_memberFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}[x:\mBbbR{}]. (sinh(x) \mmember{} \mBbbR{})
Date html generated:
2016_11_08-AM-09_09_26
Last ObjectModification:
2016_10_30-PM-06_41_18
Theory : reals_2
Home
Index