Step
*
2
of Lemma
second-derivative-log-contraction
1. a : {a:ℝ| r0 < a}
2. a + e^x≠r0 for x ∈ (-∞, ∞)
3. d((a - e^x/a + e^x))/dx = λx.((r(-2) * a) * e^x/a + e^x^2) on (-∞, ∞)
⊢ d((a - e^x/a + e^x)^2)/dx = λx.(((r(-4) * a) * e^x) * (a - e^x)/a + e^x^3) on (-∞, ∞)
BY
{ (((Assert ∀x:ℝ. (r0 < (a + e^x)) BY
(Auto THEN (RWO "rexp-positive<" 0 THENM nRNorm 0) THEN Auto))
THEN (Assert ∀x:ℝ. (r0 < a + e^x^2) BY
(Auto THEN (RWO "rnexp2" 0 THENA Auto) THEN BLemma `rmul-is-positive` THEN Auto))
THEN (Assert ∀x:ℝ. (r0 < ((a + e^x) * (a + e^x))) BY
(Auto THEN BLemma `rmul-is-positive` THEN Auto)))
THEN (FLemma `derivative-rnexp2` [-4] THENA Auto)
) }
1
1. a : {a:ℝ| r0 < a}
2. a + e^x≠r0 for x ∈ (-∞, ∞)
3. d((a - e^x/a + e^x))/dx = λx.((r(-2) * a) * e^x/a + e^x^2) on (-∞, ∞)
4. ∀x:ℝ. (r0 < (a + e^x))
5. ∀x:ℝ. (r0 < a + e^x^2)
6. ∀x:ℝ. (r0 < ((a + e^x) * (a + e^x)))
7. d((a - e^x/a + e^x)^2)/dx = λx.(r(2) * ((r(-2) * a) * e^x/a + e^x^2)) * (a - e^x/a + e^x) on (-∞, ∞)
⊢ d((a - e^x/a + e^x)^2)/dx = λx.(((r(-4) * a) * e^x) * (a - e^x)/a + e^x^3) on (-∞, ∞)
Latex:
Latex:
1. a : \{a:\mBbbR{}| r0 < a\}
2. a + e\^{}x\mneq{}r0 for x \mmember{} (-\minfty{}, \minfty{})
3. d((a - e\^{}x/a + e\^{}x))/dx = \mlambda{}x.((r(-2) * a) * e\^{}x/a + e\^{}x\^{}2) on (-\minfty{}, \minfty{})
\mvdash{} d((a - e\^{}x/a + e\^{}x)\^{}2)/dx = \mlambda{}x.(((r(-4) * a) * e\^{}x) * (a - e\^{}x)/a + e\^{}x\^{}3) on (-\minfty{}, \minfty{})
By
Latex:
(((Assert \mforall{}x:\mBbbR{}. (r0 < (a + e\^{}x)) BY
(Auto THEN (RWO "rexp-positive<" 0 THENM nRNorm 0) THEN Auto))
THEN (Assert \mforall{}x:\mBbbR{}. (r0 < a + e\^{}x\^{}2) BY
(Auto THEN (RWO "rnexp2" 0 THENA Auto) THEN BLemma `rmul-is-positive` THEN Auto))
THEN (Assert \mforall{}x:\mBbbR{}. (r0 < ((a + e\^{}x) * (a + e\^{}x))) BY
(Auto THEN BLemma `rmul-is-positive` THEN Auto)))
THEN (FLemma `derivative-rnexp2` [-4] THENA Auto)
)
Home
Index