Nuprl Lemma : standard-fact-example1
∀[x,y,z:ℝ*].  x * y * z = z * y * x
Proof
Definitions occuring in Statement : 
rmul*: x * y, 
req*: x = y, 
real*: ℝ*, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
req*: x = y, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
all: ∀x:A. B[x], 
rmul*: x * y, 
rfun*2: f*(x;y), 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
real*: ℝ*, 
int_upper: {i...}, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
rev_uimplies: rev_uimplies(P;Q), 
req_int_terms: t1 ≡ t2, 
top: Top
Lemmas referenced : 
false_wf, 
le_wf, 
int_upper_wf, 
all_wf, 
req_wf, 
rmul*_wf, 
int_upper_subtype_nat, 
real*_wf, 
rmul_wf, 
subtype_rel_self, 
nat_wf, 
rmul_assoc, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
req-iff-rsub-is-0, 
req_weakening, 
req_functionality, 
real_polynomial_null, 
int-to-real_wf, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
lambdaEquality, 
applyEquality, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[x,y,z:\mBbbR{}*].    x  *  y  *  z  =  z  *  y  *  x
Date html generated:
2018_05_22-PM-03_17_14
Last ObjectModification:
2017_10_06-PM-03_55_01
Theory : reals_2
Home
Index