Nuprl Lemma : free-group-functor_wf
FreeGp ∈ Functor(TypeCat;Group)
Proof
Definitions occuring in Statement : 
free-group-functor: FreeGp, 
group-cat: Group, 
type-cat: TypeCat, 
cat-functor: Functor(C1;C2), 
member: t ∈ T
Definitions unfolded in proof : 
free-group-functor: FreeGp, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
type-cat: TypeCat, 
all: ∀x:A. B[x], 
top: Top, 
group-cat: Group, 
mk-cat: mk-cat, 
so_apply: x[s], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
uimplies: b supposing a, 
compose: f o g, 
subtype_rel: A ⊆r B, 
free-group: free-group(X), 
grp_car: |g|, 
pi1: fst(t), 
grp: Group{i}, 
mon: Mon, 
implies: P ⇒ Q, 
monoid_hom: MonHom(M1,M2), 
prop: ℙ, 
free-letter: free-letter(x), 
fg-lift: fg-lift(G;f), 
fg-hom: fg-hom(G;f;w), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
grp_op: *, 
pi2: snd(t), 
grp_inv: ~, 
grp_id: e, 
infix_ap: x f y, 
free-0: 0, 
free-append: w + w', 
free-word-inv: free-word-inv(w), 
append: as @ bs, 
list_accum: list_accum, 
cons: [a / b], 
nil: [], 
it: ⋅, 
list_ind: list_ind, 
monoid_hom_p: IsMonHom{M1,M2}(f), 
and: P ∧ Q, 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
Lemmas referenced : 
mk-functor_wf, 
type-cat_wf, 
group-cat_wf, 
cat_ob_pair_lemma, 
free-group_wf, 
cat-ob_wf, 
cat_arrow_triple_lemma, 
cat-arrow_wf, 
cat_comp_tuple_lemma, 
cat_id_tuple_lemma, 
free-letter_wf, 
free-word_wf, 
grp_car_wf, 
grp_wf, 
fg-lift_wf, 
monoid_hom_wf, 
all_wf, 
equal_wf, 
free-group-generators, 
compose_wf_for_mon_hom, 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
list_ind_nil_lemma, 
reverse-cons, 
reverse_nil_lemma, 
free-append_wf, 
free-0_wf, 
monoid_hom_p_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
cumulativity, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
lambdaFormation, 
functionExtensionality, 
functionEquality, 
setElimination, 
rename, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
isect_memberFormation, 
axiomEquality
Latex:
FreeGp  \mmember{}  Functor(TypeCat;Group)
Date html generated:
2017_10_05-AM-00_51_39
Last ObjectModification:
2017_07_28-AM-09_20_32
Theory : small!categories
Home
Index