Nuprl Lemma : binary-tree_wf
binary-tree() ∈ Type
Proof
Definitions occuring in Statement :
binary-tree: binary-tree()
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
binary-tree: binary-tree()
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
Lemmas referenced :
binary-treeco_wf,
has-value_wf-partial,
nat_wf,
set-value-type,
le_wf,
int-value-type,
binary-treeco_size_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
setEquality,
cut,
lemma_by_obid,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
independent_isectElimination,
intEquality,
lambdaEquality,
natural_numberEquality,
hypothesisEquality
Latex:
binary-tree() \mmember{} Type
Date html generated:
2016_05_16-AM-09_05_36
Last ObjectModification:
2015_12_28-PM-06_49_21
Theory : C-semantics
Home
Index