Nuprl Lemma : absval_cases
∀x:ℤ. ∀[y:ℕ]. uiff(|x| = y ∈ ℤ;(x = y ∈ ℤ) ∨ (x = (-y) ∈ ℤ))
Proof
Definitions occuring in Statement : 
absval: |i|, 
nat: ℕ, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
or: P ∨ Q, 
minus: -n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
implies: P ⇒ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
not: ¬A, 
false: False, 
guard: {T}, 
sq_type: SQType(T), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
equal-wf-base-T, 
int_subtype_base, 
or_wf, 
nat_wf, 
absval_unfold2, 
decidable__lt, 
top_wf, 
less_than_wf, 
subtype_base_sq, 
minus-minus, 
equal_wf, 
squash_wf, 
true_wf, 
absval_pos, 
iff_weakening_equal, 
absval_sym
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
independent_pairFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
setElimination, 
because_Cache, 
minusEquality, 
independent_functionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
lessCases, 
sqequalAxiom, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
imageElimination, 
productElimination, 
inlFormation, 
inrFormation, 
instantiate, 
cumulativity, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
universeEquality
Latex:
\mforall{}x:\mBbbZ{}.  \mforall{}[y:\mBbbN{}].  uiff(|x|  =  y;(x  =  y)  \mvee{}  (x  =  (-y)))
Date html generated:
2017_04_14-AM-07_17_26
Last ObjectModification:
2017_02_27-PM-02_52_03
Theory : arithmetic
Home
Index