Nuprl Lemma : add_cancel_in_eq
∀[a,b,n:ℤ].  a = b ∈ ℤ supposing (a + n) = (b + n) ∈ ℤ
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
true_wf, 
squash_wf, 
subtract_wf, 
add-zero, 
zero-mul, 
add-mul-special, 
minus-one-mul, 
add-associates, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
addEquality, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
lambdaEquality, 
voidElimination, 
voidEquality, 
minusEquality, 
natural_numberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[a,b,n:\mBbbZ{}].    a  =  b  supposing  (a  +  n)  =  (b  +  n)
Date html generated:
2016_05_13-PM-03_39_39
Last ObjectModification:
2016_01_14-PM-06_38_10
Theory : arithmetic
Home
Index