Nuprl Lemma : add_cancel_in_eq

[a,b,n:ℤ].  b ∈ ℤ supposing (a n) (b n) ∈ ℤ


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] add: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtract: m subtype_rel: A ⊆B top: Top squash: T true: True
Lemmas referenced :  true_wf squash_wf subtract_wf add-zero zero-mul add-mul-special minus-one-mul add-associates equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality addEquality hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry applyEquality lambdaEquality voidElimination voidEquality minusEquality natural_numberEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[a,b,n:\mBbbZ{}].    a  =  b  supposing  (a  +  n)  =  (b  +  n)



Date html generated: 2016_05_13-PM-03_39_39
Last ObjectModification: 2016_01_14-PM-06_38_10

Theory : arithmetic


Home Index