Nuprl Lemma : not-ge
∀x,y:ℤ.  uiff(¬(x ≥ y );y > x)
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q), 
gt: i > j, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
not: ¬A, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
gt: i > j, 
ge: i ≥ j , 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
not: ¬A, 
false: False
Lemmas referenced : 
less_than_wf, 
iff_weakening_uiff, 
not_wf, 
le_wf, 
not-le, 
uiff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
intEquality, 
cut, 
independent_pairFormation, 
isect_memberFormation, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
addLevel, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
cumulativity, 
introduction, 
sqequalRule, 
lambdaEquality, 
voidElimination
Latex:
\mforall{}x,y:\mBbbZ{}.    uiff(\mneg{}(x  \mgeq{}  y  );y  >  x)
 Date html generated: 
2016_05_13-PM-03_29_46
 Last ObjectModification: 
2015_12_26-AM-09_47_27
Theory : arithmetic
Home
Index