Nuprl Lemma : not-gt
∀x,y:ℤ.  uiff(¬(y > x);x ≥ y )
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q), 
gt: i > j, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
not: ¬A, 
int: ℤ
Definitions unfolded in proof : 
ge: i ≥ j , 
gt: i > j, 
le: A ≤ B, 
less_than: a < b, 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
cand: A c∧ B, 
squash: ↓T, 
prop: ℙ, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
member_wf, 
and_wf, 
squash_wf, 
not_wf, 
less_than'_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
imageMemberEquality, 
baseClosed, 
lemma_by_obid, 
isectElimination, 
voidElimination, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
intEquality, 
imageElimination
Latex:
\mforall{}x,y:\mBbbZ{}.    uiff(\mneg{}(y  >  x);x  \mgeq{}  y  )
 Date html generated: 
2016_05_13-PM-03_29_47
 Last ObjectModification: 
2016_01_14-PM-06_41_44
Theory : arithmetic
Home
Index