Nuprl Lemma : rem-exact
∀[g:ℤ-o]. ∀[v:ℤ].  ((g * v rem g) = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
true: True
, 
top: Top
, 
squash: ↓T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Lemmas referenced : 
div_rem_sum, 
int_nzero_wf, 
equal_wf, 
mul-commutes, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
divide-exact, 
iff_weakening_equal, 
add-associates, 
minus-one-mul, 
add-commutes, 
add-mul-special, 
add-swap, 
zero-mul, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
multiplyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
intEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
divideEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
independent_functionElimination, 
voidElimination, 
natural_numberEquality, 
remainderEquality, 
addEquality, 
voidEquality, 
minusEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
\mforall{}[g:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[v:\mBbbZ{}].    ((g  *  v  rem  g)  =  0)
Date html generated:
2017_04_14-AM-07_20_11
Last ObjectModification:
2017_02_27-PM-02_53_43
Theory : arithmetic
Home
Index