Nuprl Lemma : seq-nil_wf
∀[T:Type]. (seq-nil() ∈ sequence(T))
Proof
Definitions occuring in Statement : 
seq-nil: seq-nil()
, 
sequence: sequence(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
nat: ℕ
, 
sequence: sequence(T)
, 
seq-nil: seq-nil()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
int_seg_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
le_wf, 
false_wf
Rules used in proof : 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
functionEquality, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
productElimination, 
rename, 
setElimination, 
functionExtensionality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
dependent_pairEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  (seq-nil()  \mmember{}  sequence(T))
Date html generated:
2018_07_25-PM-01_29_24
Last ObjectModification:
2018_06_18-PM-01_58_51
Theory : arithmetic
Home
Index