Nuprl Lemma : free-from-atom-outl
∀[A:Type]. ∀[x:A + Top]. ∀[a:Atom1]. (a#outl(x):A) supposing ((↑isl(x)) and a#x:A + Top)
Proof
Definitions occuring in Statement :
free-from-atom: a#x:T
,
atom: Atom$n
,
outl: outl(x)
,
assert: ↑b
,
isl: isl(x)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
union: left + right
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
isl: isl(x)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
outl: outl(x)
,
bfalse: ff
,
false: False
,
prop: ℙ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
Lemmas referenced :
assert_wf,
isl_wf,
top_wf,
free-from-atom_wf,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
unionElimination,
thin,
sqequalHypSubstitution,
sqequalRule,
rename,
voidElimination,
freeFromAtomAxiom,
hypothesis,
extract_by_obid,
isectElimination,
hypothesisEquality,
isect_memberEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
unionEquality,
atomnEquality,
universeEquality,
inlEquality,
freeFromAtomApplication,
freeFromAtomTriviality,
lambdaEquality,
lambdaFormation,
natural_numberEquality,
dependent_functionElimination,
independent_functionElimination,
cumulativity
Latex:
\mforall{}[A:Type]. \mforall{}[x:A + Top]. \mforall{}[a:Atom1]. (a\#outl(x):A) supposing ((\muparrow{}isl(x)) and a\#x:A + Top)
Date html generated:
2019_06_20-AM-11_20_23
Last ObjectModification:
2018_08_21-PM-01_52_35
Theory : atom_1
Home
Index