Nuprl Lemma : decidable__strictly-increasing-seq

n:ℕ. ∀s:ℕn ⟶ ℤ.  Dec(strictly-increasing-seq(n;s))


Proof




Definitions occuring in Statement :  strictly-increasing-seq: strictly-increasing-seq(n;s) int_seg: {i..j-} nat: decidable: Dec(P) all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  strictly-increasing-seq: strictly-increasing-seq(n;s) all: x:A. B[x] member: t ∈ T nat: uall: [x:A]. B[x] so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B guard: {T} uimplies: supposing a prop: so_apply: x[s] implies:  Q
Lemmas referenced :  decidable__all_int_seg all_wf int_seg_wf less_than_wf less_than_transitivity2 le_weakening2 and_wf le_wf decidable__lt nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut thin instantiate lemma_by_obid sqequalHypSubstitution dependent_functionElimination natural_numberEquality setElimination rename hypothesisEquality isectElimination lambdaEquality hypothesis applyEquality dependent_set_memberEquality productElimination independent_pairFormation independent_isectElimination because_Cache independent_functionElimination functionEquality intEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}.    Dec(strictly-increasing-seq(n;s))



Date html generated: 2016_05_13-PM-03_48_30
Last ObjectModification: 2015_12_26-AM-10_18_16

Theory : bar-induction


Home Index