Nuprl Lemma : decidable__strictly-increasing-seq
∀n:ℕ. ∀s:ℕn ⟶ ℤ.  Dec(strictly-increasing-seq(n;s))
Proof
Definitions occuring in Statement : 
strictly-increasing-seq: strictly-increasing-seq(n;s)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
strictly-increasing-seq: strictly-increasing-seq(n;s)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
Lemmas referenced : 
decidable__all_int_seg, 
all_wf, 
int_seg_wf, 
less_than_wf, 
less_than_transitivity2, 
le_weakening2, 
and_wf, 
le_wf, 
decidable__lt, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
isectElimination, 
lambdaEquality, 
hypothesis, 
applyEquality, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
functionEquality, 
intEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}.    Dec(strictly-increasing-seq(n;s))
Date html generated:
2016_05_13-PM-03_48_30
Last ObjectModification:
2015_12_26-AM-10_18_16
Theory : bar-induction
Home
Index