Nuprl Lemma : tcWO-induction

[T:Type]. ∀[>:T ⟶ T ⟶ ℙ].  ∀[Q:T ⟶ ℙ]. TI(T;x,y.>[x;y];t.Q[t]) supposing tcWO(T;x,y.>[x;y])


Proof




Definitions occuring in Statement :  tcWO: tcWO(T;x,y.>[x; y]) TI: TI(T;x,y.R[x; y];t.Q[t]) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a tcWO: tcWO(T;x,y.>[x; y]) and: P ∧ Q almost-full: AFx,y:T.R[x; y] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop:
Lemmas referenced :  AF-induction2 tcWO_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination productElimination sqequalRule lambdaEquality applyEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[>:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}[Q:T  {}\mrightarrow{}  \mBbbP{}].  TI(T;x,y.>[x;y];t.Q[t])  supposing  tcWO(T;x,y.>[x;y])



Date html generated: 2016_05_13-PM-03_53_02
Last ObjectModification: 2015_12_26-AM-10_16_55

Theory : bar-induction


Home Index