Nuprl Lemma : eq_int_eq_true_elim
∀[i,j:ℤ].  i = j ∈ ℤ supposing (i =z j) = tt
Proof
Definitions occuring in Statement : 
eq_int: (i =z j), 
btrue: tt, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
implies: P ⇒ Q, 
false: False
Lemmas referenced : 
equal-wf-base, 
bool_wf, 
int_subtype_base, 
decidable__int_equal, 
eq_int_eq_false, 
btrue_neq_bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
intEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}[i,j:\mBbbZ{}].    i  =  j  supposing  (i  =\msubz{}  j)  =  tt
Date html generated:
2019_06_20-AM-11_32_02
Last ObjectModification:
2018_09_26-AM-11_24_56
Theory : bool_1
Home
Index