Nuprl Lemma : equal_bool_if
∀[a,b:𝔹].  (a = b) supposing ((¬((↑a) ∧ (¬↑b))) and (¬((¬↑a) ∧ (↑b))))
Proof
Definitions occuring in Statement : 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
and: P ∧ Q, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
bool: 𝔹, 
unit: Unit, 
member: t ∈ T, 
it: ⋅, 
btrue: tt, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
false: False, 
not: ¬A, 
cand: A c∧ B, 
true: True, 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
btrue_wf, 
iff_imp_equal_bool, 
bfalse_wf, 
istype-void, 
true_wf, 
assert_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
equalityElimination, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
isectElimination, 
independent_isectElimination, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
independent_functionElimination, 
natural_numberEquality, 
voidElimination, 
Error :universeIsType, 
Error :functionIsType, 
Error :productIsType, 
because_Cache, 
hypothesisEquality, 
Error :inhabitedIsType
Latex:
\mforall{}[a,b:\mBbbB{}].    (a  =  b)  supposing  ((\mneg{}((\muparrow{}a)  \mwedge{}  (\mneg{}\muparrow{}b)))  and  (\mneg{}((\mneg{}\muparrow{}a)  \mwedge{}  (\muparrow{}b))))
Date html generated:
2019_06_20-AM-11_31_27
Last ObjectModification:
2018_10_10-PM-06_41_47
Theory : bool_1
Home
Index