Nuprl Lemma : ifthenelse-simplify0
∀[b:𝔹]. ∀[x,y:Top].  (if b then x[b] else y[b] fi  ~ if b then x[tt] else y[ff] fi )
Proof
Definitions occuring in Statement : 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
btrue: tt, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
top_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
thin, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
equalityElimination, 
isectElimination, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
sqequalAxiom, 
isect_memberEquality, 
because_Cache, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[x,y:Top].    (if  b  then  x[b]  else  y[b]  fi    \msim{}  if  b  then  x[tt]  else  y[ff]  fi  )
 Date html generated: 
2017_04_14-AM-07_31_52
 Last ObjectModification: 
2017_02_27-PM-02_59_44
Theory : bool_1
Home
Index