Nuprl Lemma : not-assert-bdd-all
∀n:ℕ. ∀P:ℕn ⟶ 𝔹.  (¬↑bdd-all(n;i.P[i]) ⇐⇒ ∃i:ℕn. (¬↑P[i]))
Proof
Definitions occuring in Statement : 
bdd-all: bdd-all(n;i.P[i]), 
int_seg: {i..j-}, 
nat: ℕ, 
assert: ↑b, 
bool: 𝔹, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
function: x:A ⟶ B[x], 
natural_number: $n
Definitions unfolded in proof : 
guard: {T}, 
or: P ∨ Q, 
decidable: Dec(P), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
rev_implies: P ⇐ Q, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
decidable__assert, 
decidable__not, 
decidable__exists_int_seg, 
iff_wf, 
bdd-all_wf, 
assert-bdd-all, 
nat_wf, 
bool_wf, 
exists_wf, 
assert_wf, 
int_seg_wf, 
all_wf, 
not_wf
Rules used in proof : 
dependent_pairFormation, 
unionElimination, 
instantiate, 
impliesLevelFunctionality, 
dependent_functionElimination, 
impliesFunctionality, 
productElimination, 
allFunctionality, 
addLevel, 
functionEquality, 
voidElimination, 
independent_functionElimination, 
because_Cache, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
cut
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}P:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.    (\mneg{}\muparrow{}bdd-all(n;i.P[i])  \mLeftarrow{}{}\mRightarrow{}  \mexists{}i:\mBbbN{}n.  (\mneg{}\muparrow{}P[i]))
Date html generated:
2017_09_29-PM-05_47_59
Last ObjectModification:
2017_09_06-AM-11_35_31
Theory : bool_1
Home
Index