Nuprl Lemma : nat_well_founded
WellFnd{i}(ℕ;x,y.x < y)
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
less_than: a < b
Definitions unfolded in proof : 
wellfounded: WellFnd{i}(A;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
Lemmas referenced : 
all_wf, 
nat_wf, 
less_than_wf, 
comp_nat_ind_a, 
isect_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
Error :functionIsType, 
Error :universeIsType, 
universeEquality, 
instantiate, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination
Latex:
WellFnd\{i\}(\mBbbN{};x,y.x  <  y)
Date html generated:
2019_06_20-AM-11_28_02
Last ObjectModification:
2018_09_26-AM-10_58_12
Theory : call!by!value_2
Home
Index