Nuprl Lemma : nat_well_founded

WellFnd{i}(ℕ;x,y.x < y)


Proof




Definitions occuring in Statement :  nat: wellfounded: WellFnd{i}(A;x,y.R[x; y]) less_than: a < b
Definitions unfolded in proof :  wellfounded: WellFnd{i}(A;x,y.R[x; y]) uall: [x:A]. B[x] implies:  Q guard: {T} member: t ∈ T prop: so_lambda: λ2x.t[x] nat: so_apply: x[s] all: x:A. B[x] uimplies: supposing a
Lemmas referenced :  all_wf nat_wf less_than_wf comp_nat_ind_a isect_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality functionEquality setElimination rename hypothesisEquality applyEquality Error :functionIsType,  Error :universeIsType,  universeEquality instantiate independent_functionElimination dependent_functionElimination because_Cache independent_isectElimination

Latex:
WellFnd\{i\}(\mBbbN{};x,y.x  <  y)



Date html generated: 2019_06_20-AM-11_28_02
Last ObjectModification: 2018_09_26-AM-10_58_12

Theory : call!by!value_2


Home Index