Nuprl Lemma : primrec-wf-nat-plus
∀[P:ℕ+ ⟶ ℙ]. ∀[b:P[1]]. ∀[s:∀n:ℕ+. (P[n] ⇒ P[n + 1])]. ∀[n:ℕ+].  (primrec(n - 1;b;λi,x. (s (i + 1) x)) ∈ P[n])
Proof
Definitions occuring in Statement : 
primrec: primrec(n;b;c), 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s], 
uimplies: b supposing a, 
int_upper: {i...}, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
le: A ≤ B, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
uiff: uiff(P;Q), 
top: Top, 
less_than': less_than'(a;b), 
true: True, 
subtract: n - m, 
less_than: a < b, 
squash: ↓T
Lemmas referenced : 
all_wf, 
le-add-cancel2, 
add-swap, 
not-le-2, 
decidable__le, 
add-zero, 
add-associates, 
minus-one-mul-top, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
less-iff-le, 
subtype_rel_self, 
le-add-cancel, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
not-lt-2, 
false_wf, 
decidable__lt, 
less_than_wf, 
le_wf, 
subtype_rel_sets, 
int_upper_wf, 
nat_plus_wf, 
subtype_rel_dep_function, 
primrec-wf-upper
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
natural_numberEquality, 
isect_memberFormation, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
instantiate, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
universeEquality, 
independent_isectElimination, 
intEquality, 
because_Cache, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
independent_functionElimination, 
isect_memberEquality, 
voidEquality, 
functionEquality, 
dependent_set_memberEquality, 
addEquality, 
minusEquality, 
equalityTransitivity, 
equalitySymmetry, 
introduction, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[P:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[b:P[1]].  \mforall{}[s:\mforall{}n:\mBbbN{}\msupplus{}.  (P[n]  {}\mRightarrow{}  P[n  +  1])].  \mforall{}[n:\mBbbN{}\msupplus{}].
    (primrec(n  -  1;b;\mlambda{}i,x.  (s  (i  +  1)  x))  \mmember{}  P[n])
Date html generated:
2016_05_13-PM-03_46_40
Last ObjectModification:
2016_01_14-PM-07_11_32
Theory : call!by!value_2
Home
Index