Nuprl Lemma : primrec-wf-upper
∀[k:ℤ]. ∀[P:{k...} ⟶ ℙ]. ∀[b:P[k]]. ∀[s:∀n:{k...}. (P[n] ⇒ P[n + 1])]. ∀[n:{k...}].
  (primrec(n - k;b;λi,x. (s (i + k) x)) ∈ P[n])
Proof
Definitions occuring in Statement : 
primrec: primrec(n;b;c), 
int_upper: {i...}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
nat: ℕ, 
ge: i ≥ j , 
cand: A c∧ B, 
less_than: a < b, 
guard: {T}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
sq_type: SQType(T), 
bfalse: ff, 
exists: ∃x:A. B[x], 
bnot: ¬bb, 
assert: ↑b, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
int_upper: {i...}, 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
squash: ↓T, 
subtract: n - m, 
top: Top, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
prop: ℙ
Lemmas referenced : 
subtract_nat_wf, 
minus-minus, 
decidable__lt, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
istype-less_than, 
primrec-unroll, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
subtype_base_sq, 
int_subtype_base, 
add-zero, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
less_than_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
istype-assert, 
int_upper_wf, 
not-lt-2, 
subtract-1-ge-0, 
subtype_rel-equal, 
less-iff-le, 
le-add-cancel2, 
subtract_wf, 
subtype_rel_function, 
le_weakening2, 
zero-add, 
subtype_rel_self, 
add-is-int-iff, 
one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
omega-shadow, 
istype-nat, 
decidable__le, 
istype-false, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
istype-void, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
add-commutes, 
add_functionality_wrt_le, 
le-add-cancel, 
istype-le, 
le_reflexive, 
istype-int_upper, 
istype-int
Rules used in proof : 
intWeakElimination, 
Error :lambdaEquality_alt, 
Error :functionIsTypeImplies, 
equalityElimination, 
instantiate, 
cumulativity, 
intEquality, 
Error :dependent_pairFormation_alt, 
Error :equalityIstype, 
promote_hyp, 
functionExtensionality, 
baseApply, 
closedConclusion, 
multiplyEquality, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
because_Cache, 
Error :isect_memberEquality_alt, 
isectElimination, 
thin, 
hypothesisEquality, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsType, 
Error :universeIsType, 
applyEquality, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
extract_by_obid, 
dependent_functionElimination, 
unionElimination, 
independent_pairFormation, 
Error :lambdaFormation_alt, 
voidElimination, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
minusEquality, 
universeEquality
Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[P:\{k...\}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[b:P[k]].  \mforall{}[s:\mforall{}n:\{k...\}.  (P[n]  {}\mRightarrow{}  P[n  +  1])].  \mforall{}[n:\{k...\}].
    (primrec(n  -  k;b;\mlambda{}i,x.  (s  (i  +  k)  x))  \mmember{}  P[n])
Date html generated:
2019_06_20-PM-01_04_41
Last ObjectModification:
2019_06_20-PM-01_01_23
Theory : call!by!value_2
Home
Index