Nuprl Lemma : altW_wf

[A:𝕌']. ∀[B:A ⟶ Type].  (altW(A;a.B[a]) ∈ 𝕌')


Proof




Definitions occuring in Statement :  altW: altW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: so_apply: x[s] so_lambda: λ2x.t[x] altW: altW(A;a.B[a]) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coW-wfdd_wf coW_wf
Rules used in proof :  because_Cache isect_memberEquality universeEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality hypothesis applyEquality cumulativity lambdaEquality hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid instantiate thin setEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (altW(A;a.B[a])  \mmember{}  \mBbbU{}')



Date html generated: 2018_07_29-AM-09_22_02
Last ObjectModification: 2018_07_26-PM-05_31_41

Theory : co-recursion


Home Index