Nuprl Lemma : coW-wfdd_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  (coW-wfdd(a.B[a];w) ∈ ℙ)


Proof




Definitions occuring in Statement :  coW-wfdd: coW-wfdd(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  top: Top true: True less_than': less_than'(a;b) le: A ≤ B subtract: m squash: T sq_stable: SqStable(P) uimplies: supposing a uiff: uiff(P;Q) false: False rev_implies:  Q not: ¬A and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] nat: subtype_rel: A ⊆B prop: implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] coW-wfdd: coW-wfdd(a.B[a];w) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coW_wf not_wf exists_wf squash_wf copathAgree_wf le_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 false_wf decidable__le copath-length_wf equal_wf copath_wf nat_wf all_wf
Rules used in proof :  universeEquality instantiate equalitySymmetry equalityTransitivity axiomEquality voidEquality isect_memberEquality minusEquality imageElimination baseClosed imageMemberEquality independent_isectElimination independent_functionElimination productElimination voidElimination lambdaFormation independent_pairFormation unionElimination dependent_functionElimination natural_numberEquality addEquality dependent_set_memberEquality rename setElimination intEquality because_Cache functionExtensionality applyEquality lambdaEquality hypothesisEquality cumulativity hypothesis functionEquality setEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].    (coW-wfdd(a.B[a];w)  \mmember{}  \mBbbP{})



Date html generated: 2018_07_25-PM-01_41_54
Last ObjectModification: 2018_07_23-PM-03_19_11

Theory : co-recursion


Home Index