Step
*
1
of Lemma
coW-equiv-iff2
1. [A] : 𝕌'
2. B : A ⟶ Type
3. w : coW(A;a.B[a])
4. w' : coW(A;a.B[a])
5. coW-equiv(a.B[a];w;w')
6. p : copath(a.B[a];w')
⊢ ∃q:copath(a.B[a];w). ((copath-length(q) = copath-length(p) ∈ ℤ) ∧ coW-equiv(a.B[a];copath-at(w';p);copath-at(w;q)))
BY
{ (D -1
THEN (RepUR ``copath-length`` 0 THEN Fold `copath-length` 0)
THEN RepUR ``copath-at`` 0
THEN Fold `copath-at` 0
THEN MoveToConcl (-1)
THEN RepeatFor 3 (MoveToConcl (-2))
THEN NatInd (-1)
THEN Auto) }
1
1. [A] : 𝕌'
2. B : A ⟶ Type
3. w : coW(A;a.B[a])
4. w' : coW(A;a.B[a])
5. coW-equiv(a.B[a];w;w')
6. p1 : coPath(a.B[a];w';0)
⊢ ∃q:copath(a.B[a];w). ((copath-length(q) = 0 ∈ ℤ) ∧ coW-equiv(a.B[a];coPath-at(0;w';p1);copath-at(w;q)))
2
1. [A] : 𝕌'
2. B : A ⟶ Type
3. n : ℤ
4. [%1] : 0 < n
5. ∀w,w':coW(A;a.B[a]).
(coW-equiv(a.B[a];w;w')
⇒ (∀p1:coPath(a.B[a];w';n - 1)
∃q:copath(a.B[a];w)
((copath-length(q) = (n - 1) ∈ ℤ) ∧ coW-equiv(a.B[a];coPath-at(n - 1;w';p1);copath-at(w;q)))))
6. w : coW(A;a.B[a])
7. w' : coW(A;a.B[a])
8. coW-equiv(a.B[a];w;w')
9. p1 : coPath(a.B[a];w';n)
⊢ ∃q:copath(a.B[a];w). ((copath-length(q) = n ∈ ℤ) ∧ coW-equiv(a.B[a];coPath-at(n;w';p1);copath-at(w;q)))
Latex:
Latex:
1. [A] : \mBbbU{}'
2. B : A {}\mrightarrow{} Type
3. w : coW(A;a.B[a])
4. w' : coW(A;a.B[a])
5. coW-equiv(a.B[a];w;w')
6. p : copath(a.B[a];w')
\mvdash{} \mexists{}q:copath(a.B[a];w)
((copath-length(q) = copath-length(p)) \mwedge{} coW-equiv(a.B[a];copath-at(w';p);copath-at(w;q)))
By
Latex:
(D -1
THEN (RepUR ``copath-length`` 0 THEN Fold `copath-length` 0)
THEN RepUR ``copath-at`` 0
THEN Fold `copath-at` 0
THEN MoveToConcl (-1)
THEN RepeatFor 3 (MoveToConcl (-2))
THEN NatInd (-1)
THEN Auto)
Home
Index