Nuprl Lemma : coW-equiv-iff2
∀[A:𝕌']
  ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]).
    (coW-equiv(a.B[a];w;w')
    ⇐⇒ ∀p:copath(a.B[a];w')
          ∃q:copath(a.B[a];w)
           ((copath-length(q) = copath-length(p) ∈ ℤ) ∧ coW-equiv(a.B[a];copath-at(w';p);copath-at(w;q))))
Proof
Definitions occuring in Statement : 
coW-equiv: coW-equiv(a.B[a];w;w'), 
copath-length: copath-length(p), 
copath-at: copath-at(w;p), 
copath: copath(a.B[a];w), 
coW: coW(A;a.B[a]), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
nequal: a ≠ b ∈ T , 
assert: ↑b, 
bnot: ¬bb, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
copath-cons: copath-cons(b;x), 
coWmem: coWmem(a.B[a];z;w), 
bfalse: ff, 
sq_type: SQType(T), 
coPath: coPath(a.B[a];w;n), 
btrue: tt, 
ifthenelse: if b then t else f fi , 
copath-nil: (), 
eq_int: (i =z j), 
coPath-at: coPath-at(n;w;p), 
cand: A c∧ B, 
exists: ∃x:A. B[x], 
true: True, 
top: Top, 
subtract: n - m, 
uiff: uiff(P;Q), 
or: P ∨ Q, 
decidable: Dec(P), 
uimplies: b supposing a, 
guard: {T}, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
copath-at: copath-at(w;p), 
pi1: fst(t), 
copath-length: copath-length(p), 
copath: copath(a.B[a];w), 
nat: ℕ, 
subtype_rel: A ⊆r B, 
rev_implies: P ⇐ Q, 
prop: ℙ, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
not-equal-2, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_cases_sqequal, 
length-copath-cons, 
copath-cons_wf, 
coW-item-coWmem, 
coW-item_wf, 
coW-equiv-iff, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
equal-wf-base, 
not_wf, 
bnot_wf, 
assert_wf, 
less_than_irreflexivity, 
le_weakening, 
less_than_transitivity1, 
eq_int_wf, 
coW-equiv_inversion, 
copath_length_nil_lemma, 
copath-nil_wf, 
primrec-wf2, 
less_than_wf, 
set_wf, 
coPath-at_wf, 
int_subtype_base, 
equal-wf-T-base, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-le-2, 
decidable__le, 
subtract_wf, 
le_weakening2, 
le_wf, 
false_wf, 
coPath_wf, 
coW_wf, 
copath-at_wf, 
nat_wf, 
copath-length_wf, 
equal_wf, 
exists_wf, 
all_wf, 
coW-equiv_wf, 
copath_wf
Rules used in proof : 
dependent_pairEquality, 
equalityElimination, 
promote_hyp, 
independent_pairEquality, 
impliesFunctionality, 
equalitySymmetry, 
equalityTransitivity, 
dependent_pairFormation, 
baseClosed, 
closedConclusion, 
baseApply, 
minusEquality, 
voidEquality, 
isect_memberEquality, 
addEquality, 
independent_functionElimination, 
voidElimination, 
unionElimination, 
independent_isectElimination, 
dependent_functionElimination, 
natural_numberEquality, 
dependent_set_memberEquality, 
functionExtensionality, 
productElimination, 
universeEquality, 
functionEquality, 
cumulativity, 
instantiate, 
because_Cache, 
rename, 
setElimination, 
intEquality, 
productEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).
        (coW-equiv(a.B[a];w;w')
        \mLeftarrow{}{}\mRightarrow{}  \mforall{}p:copath(a.B[a];w')
                    \mexists{}q:copath(a.B[a];w)
                      ((copath-length(q)  =  copath-length(p))
                      \mwedge{}  coW-equiv(a.B[a];copath-at(w';p);copath-at(w;q))))
Date html generated:
2018_07_25-PM-01_49_03
Last ObjectModification:
2018_07_24-PM-03_46_18
Theory : co-recursion
Home
Index