Nuprl Lemma : coPath-at_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[n:ℕ]. ∀[w:coW(A;a.B[a])]. ∀[p:coPath(a.B[a];w;n)].  (coPath-at(n;w;p) ∈ coW(A;a.B[a]))


Proof




Definitions occuring in Statement :  coPath-at: coPath-at(n;w;p) coPath: coPath(a.B[a];w;n) coW: coW(A;a.B[a]) nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  nequal: a ≠ b ∈  coPath: coPath(a.B[a];w;n) assert: b bnot: ¬bb sq_type: SQType(T) exists: x:A. B[x] bfalse: ff it: unit: Unit bool: 𝔹 true: True top: Top subtype_rel: A ⊆B uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] not: ¬A less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) coPath-at: coPath-at(n;w;p) so_apply: x[s] so_lambda: λ2x.t[x] prop: uimplies: supposing a guard: {T} ge: i ≥  false: False implies:  Q nat: member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  assert_of_bnot iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert bool_cases coW-item_wf equal-wf-base not_wf bnot_wf assert_wf int_subtype_base nat_wf le_weakening2 neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert bool_wf eq_int_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 subtract_wf decidable__le le_wf false_wf coW_wf coPath_wf less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties
Rules used in proof :  impliesFunctionality spreadEquality baseClosed universeEquality functionEquality promote_hyp dependent_pairFormation equalityElimination minusEquality intEquality voidEquality addEquality productElimination unionElimination independent_pairFormation dependent_set_memberEquality instantiate because_Cache functionExtensionality applyEquality cumulativity equalitySymmetry equalityTransitivity axiomEquality isect_memberEquality dependent_functionElimination lambdaEquality voidElimination independent_functionElimination independent_isectElimination natural_numberEquality lambdaFormation intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[p:coPath(a.B[a];w;n)].
    (coPath-at(n;w;p)  \mmember{}  coW(A;a.B[a]))



Date html generated: 2018_07_25-PM-01_38_33
Last ObjectModification: 2018_07_18-PM-05_19_09

Theory : co-recursion


Home Index