Nuprl Lemma : coW-equiv-iff

[A:𝕌']
  ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]).
    (coW-equiv(a.B[a];w;w') ⇐⇒ ∀z:coW(A;a.B[a]). (coWmem(a.B[a];z;w) ⇐⇒ coWmem(a.B[a];z;w')))


Proof




Definitions occuring in Statement :  coWmem: coWmem(a.B[a];z;w) coW-equiv: coW-equiv(a.B[a];w;w') coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  label: ...$L... t copath-cons: copath-cons(b;x) coPathAgree: coPathAgree(a.B[a];n;w;p;q) copathAgree: copathAgree(a.B[a];w;x;y) sg-legal2: Legal2(x;y) top: Top less_than': less_than'(a;b) le: A ≤ B ext-eq: A ≡ B exists: x:A. B[x] coW-dom: coW-dom(a.B[a];w) coW-item: coW-item(w;b) coWmem: coWmem(a.B[a];z;w) bfalse: ff btrue: tt ifthenelse: if then else fi  subtract: m eq_int: (i =z j) coPath: coPath(a.B[a];w;n) copath: copath(a.B[a];w) squash: T sq_type: SQType(T) uimplies: supposing a true: True false: False not: ¬A guard: {T} cand: c∧ B or: P ∨ Q decidable: Dec(P) nat: subtype_rel: A ⊆B copath-nil: () copath-length: copath-length(p) sg-init: InitialPos(g) pi2: snd(t) sg-legal1: Legal1(x;y) pi1: fst(t) sg-pos: Pos(g) coW-game: coW-game(a.B[a];w;w') coW-equiv: coW-equiv(a.B[a];w;w') rev_implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  coW-game-step-isom isom-preserves-win2 sg-normalize_wf sg-normalize-win2 simple-game_wf copath-nil_wf copath-cons_wf top_wf sg-legal2_wf coPathAgree_wf equal-wf-base coPathAgree0_lemma sg-change-init_wf win2_wf false_wf coW-equiv_weakening subtype_rel_weakening coW-ext coW-item_wf le_wf set_subtype_base pi1_wf coPath_wf pi2_wf iff_weakening_equal subtype_rel_self true_wf squash_wf equal_wf int_subtype_base subtype_base_sq copath_wf equal-wf-T-base nat_wf copath-length_wf decidable__int_equal sg-init_wf sg-legal1_wf sg-pos_wf set_wf coW-game_wf win2-iff coW-equiv_inversion coW-equiv-implies coWmem_wf iff_wf coW_wf all_wf coW-equiv_wf
Rules used in proof :  voidEquality isect_memberEquality independent_pairEquality dependent_set_memberEquality dependent_pairEquality dependent_pairFormation hypothesis_subsumption applyLambdaEquality imageMemberEquality imageElimination promote_hyp independent_isectElimination equalityTransitivity functionExtensionality levelHypothesis equalityUniverse voidElimination inrFormation baseClosed intEquality productEquality equalitySymmetry inlFormation unionElimination natural_numberEquality rename setElimination productElimination independent_functionElimination dependent_functionElimination universeEquality functionEquality because_Cache cumulativity instantiate hypothesis applyEquality lambdaEquality sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).
        (coW-equiv(a.B[a];w;w')  \mLeftarrow{}{}\mRightarrow{}  \mforall{}z:coW(A;a.B[a]).  (coWmem(a.B[a];z;w)  \mLeftarrow{}{}\mRightarrow{}  coWmem(a.B[a];z;w')))



Date html generated: 2018_07_25-PM-01_48_57
Last ObjectModification: 2018_07_11-PM-00_21_34

Theory : co-recursion


Home Index