Nuprl Lemma : win2-iff

g:SimpleGame. (win2(g) ⇐⇒ ∀p:{p:Pos(g)| Legal1(InitialPos(g);p)} . ∃q:{q:Pos(g)| Legal2(p;q)} win2(g@q))


Proof




Definitions occuring in Statement :  sg-change-init: g@j win2: win2(g) sg-legal2: Legal2(x;y) sg-legal1: Legal1(x;y) sg-init: InitialPos(g) sg-pos: Pos(g) simple-game: SimpleGame all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  sg-legal2: Legal2(x;y) int_nzero: -o sg-reachable: sg-reachable(g;x;y) sg-legal1: Legal1(x;y) nequal: a ≠ b ∈  assert: b bnot: ¬bb sq_stable: SqStable(P) seq-truncate: seq-truncate(s;n) play-truncate: play-truncate(f;m) sq_type: SQType(T) sequence: sequence(T) spreadn: spread4 sg-change-init: g@j sg-pos: Pos(g) simple-game: SimpleGame it: unit: Unit bool: 𝔹 win2strat: win2strat(g;n) ge: i ≥  exists: x:A. B[x] guard: {T} play-len: ||moves|| top: Top uimplies: supposing a uiff: uiff(P;Q) or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k int_seg: {i..j-} bfalse: ff sg-init: InitialPos(g) pi2: snd(t) seq-item: s[i] seq-nil: seq-nil() seq-cons: seq-cons(a;s) pi1: fst(t) seq-len: ||s|| play-item: moves[i] cand: c∧ B btrue: tt ifthenelse: if then else fi  eq_int: (i =z j) strat2play: strat2play(g;n;s) rev_implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] subtract: m not: ¬A false: False le: A ≤ B nat: subtype_rel: A ⊆B prop: uall: [x:A]. B[x] true: True less_than': less_than'(a;b) squash: T less_than: a < b nat_plus: + member: t ∈ T win2: win2(g) implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x]
Lemmas referenced :  multiply-is-int-iff mod2-2n-plus-1 nequal_wf modulus_wf mod2-2n seq-tl-item seq-add-len seq-add-item assert_of_lt_int lt_int_wf nat_plus_properties nat_plus_subtype_nat nat_plus_wf seq-tl_wf seq-add_wf seq-tl-len strat2play-invariant iff_weakening_equal strat2play_subtype_le subtype_rel_set int_seg_wf minus-zero true_wf squash_wf decidable__int_equal not-equal-2 neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal le_antisymmetry_iff mul_preserves_le mul-swap sq_stable__le multiply_nat_wf add_nat_wf add-is-int-iff mul_bounds_1a mul-commutes mul-distributes le-add-cancel-alt strat2play-invariant-1 omega-shadow two-mul add-mul-special one-mul subtype_rel_self not-equal-implies-less zero-mul mul-distributes-right mul-associates set_subtype_base seq-cons-item subtype_base_sq sequence_wf le_reflexive le_weakening2 le_weakening sequence_subtype strat2play_subtype sg-reachable_wf add-subtract-cancel assert_of_bnot eqff_to_assert iff_weakening_uiff iff_transitivity assert_of_eq_int eqtt_to_assert uiff_transitivity not-le-2 int_subtype_base not_wf bnot_wf assert_wf equal-wf-base bool_wf eq_int_wf add-zero add-swap add-associates minus-minus minus-add minus-one-mul-top minus-one-mul condition-implies-le less-iff-le not-ge-2 subtract_wf decidable__le ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties strat2play_wf play-item_wf subtype_rel_sets play-len_wf equal-wf-T-base le-add-cancel2 lelt_wf le-add-cancel zero-add add-commutes add_functionality_wrt_le not-lt-2 decidable__lt seq-item_wf equal_wf seq-len_wf seq-nil_wf seq-cons_wf simple-game_wf sg-change-init_wf sg-legal2_wf exists_wf all_wf respond-implies-win2 win2_wf sg-init_wf sg-legal1_wf sg-pos_wf set_wf win2strat_wf nat_wf le_wf false_wf less_than_wf win2strat-properties
Rules used in proof :  levelHypothesis addLevel functionEquality functionExtensionality dependent_pairEquality universeEquality hyp_replacement multiplyEquality promote_hyp sqequalIntensionalEquality cumulativity instantiate imageElimination applyLambdaEquality impliesFunctionality equalityElimination dependentIntersection_memberEquality closedConclusion baseApply minusEquality addEquality axiomEquality intWeakElimination isect_memberFormation dependent_pairFormation intEquality voidEquality isect_memberEquality independent_isectElimination voidElimination unionElimination productEquality because_Cache setElimination setEquality independent_functionElimination productElimination isectEquality equalitySymmetry equalityTransitivity lambdaEquality applyEquality isectElimination hypothesis baseClosed imageMemberEquality sqequalRule natural_numberEquality dependent_set_memberEquality hypothesisEquality thin dependent_functionElimination extract_by_obid introduction cut sqequalHypSubstitution rename independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:SimpleGame
    (win2(g)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}p:\{p:Pos(g)|  Legal1(InitialPos(g);p)\}  .  \mexists{}q:\{q:Pos(g)|  Legal2(p;q)\}  .  win2(g@q))



Date html generated: 2018_07_25-PM-01_37_01
Last ObjectModification: 2018_07_11-PM-00_23_31

Theory : co-recursion


Home Index