Nuprl Lemma : seq-tl_wf

[T:Type]. ∀[s:sequence(T)].  seq-tl(s) ∈ sequence(T) supposing 0 < ||s||


Proof




Definitions occuring in Statement :  seq-tl: seq-tl(s) seq-len: ||s|| sequence: sequence(T) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n universe: Type
Definitions unfolded in proof :  lelt: i ≤ j < k int_seg: {i..j-} true: True less_than': less_than'(a;b) le: A ≤ B top: Top subtype_rel: A ⊆B subtract: m uiff: uiff(P;Q) prop: false: False implies:  Q rev_implies:  Q not: ¬A and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) all: x:A. B[x] nat: pi1: fst(t) seq-len: ||s|| sequence: sequence(T) seq-tl: seq-tl(s) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  sequence_wf seq-len_wf less_than_wf and_wf le-add-cancel2 add-member-int_seg2 int_seg_wf le_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add nat_wf minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-le-2 false_wf decidable__le subtract_wf
Rules used in proof :  universeEquality equalitySymmetry equalityTransitivity axiomEquality functionEquality functionExtensionality intEquality minusEquality voidEquality isect_memberEquality lambdaEquality applyEquality addEquality independent_isectElimination independent_functionElimination voidElimination lambdaFormation independent_pairFormation unionElimination hypothesisEquality dependent_functionElimination natural_numberEquality hypothesis because_Cache rename setElimination isectElimination extract_by_obid dependent_set_memberEquality dependent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[s:sequence(T)].    seq-tl(s)  \mmember{}  sequence(T)  supposing  0  <  ||s||



Date html generated: 2018_07_25-PM-01_29_11
Last ObjectModification: 2018_06_15-PM-01_08_13

Theory : arithmetic


Home Index