Nuprl Lemma : strat2play-invariant

g:SimpleGame. ∀n:ℕ. ∀s:win2strat(g;n). ∀moves:strat2play(g;n;s). ∀i:ℕ(2 n) 1.
  ((((i mod 2) 0 ∈ ℤ (↓Legal1(moves[i];moves[i 1])))
  ∧ (((i mod 2) 1 ∈ ℤ (↓Legal2(moves[i];moves[i 1]))))


Proof




Definitions occuring in Statement :  strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) play-item: moves[i] sg-legal2: Legal2(x;y) sg-legal1: Legal1(x;y) simple-game: SimpleGame modulus: mod n int_seg: {i..j-} nat: all: x:A. B[x] squash: T implies:  Q and: P ∧ Q multiply: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T and: P ∧ Q uall: [x:A]. B[x] nat: int_seg: {i..j-} int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) guard: {T} false: False prop: subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) nat_plus: + less_than: a < b squash: T lelt: i ≤ j < k exists: x:A. B[x] top: Top subtract: m uiff: uiff(P;Q) decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  strat2play-invariant-1 int_seg_wf strat2play_wf win2strat_wf nat_wf simple-game_wf div_rem_sum subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf rem_bounds_1 int_seg_subtype_nat false_wf less_than_wf div_bounds_1 equal_wf lelt_wf mul-commutes add-commutes subtract_wf add-associates minus-add minus-one-mul mul-associates add-swap add-mul-special mul-distributes-right two-mul zero-mul zero-add add-zero one-mul add-is-int-iff add_functionality_wrt_le le_reflexive less-iff-le not-lt-2 omega-shadow mul-distributes int_seg_properties nat_properties decidable__lt modulus-is-rem equal-wf-T-base set_subtype_base sq_stable__le squash_wf add_functionality_wrt_eq subtype_rel_self iff_weakening_equal le-add-cancel
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination isectElimination natural_numberEquality addEquality multiplyEquality setElimination rename dependent_set_memberEquality addLevel instantiate cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination baseClosed applyEquality sqequalRule independent_pairFormation imageMemberEquality because_Cache divideEquality dependent_pairFormation sqequalIntensionalEquality promote_hyp isect_memberEquality voidEquality baseApply closedConclusion minusEquality unionElimination remainderEquality lambdaEquality imageElimination universeEquality equalityUniverse levelHypothesis

Latex:
\mforall{}g:SimpleGame.  \mforall{}n:\mBbbN{}.  \mforall{}s:win2strat(g;n).  \mforall{}moves:strat2play(g;n;s).  \mforall{}i:\mBbbN{}(2  *  n)  +  1.
    ((((i  mod  2)  =  0)  {}\mRightarrow{}  (\mdownarrow{}Legal1(moves[i];moves[i  +  1])))
    \mwedge{}  (((i  mod  2)  =  1)  {}\mRightarrow{}  (\mdownarrow{}Legal2(moves[i];moves[i  +  1]))))



Date html generated: 2018_07_25-PM-01_33_11
Last ObjectModification: 2018_06_12-PM-00_38_49

Theory : co-recursion


Home Index