Nuprl Lemma : win2strat-properties
∀g:SimpleGame. ∀n:ℕ+. ∀s:win2strat(g;n).
  ((s ∈ win2strat(g;n - 1))
  ∧ (s ∈ moves:{f:strat2play(g;n - 1;s)| ||f|| = (2 * n) ∈ ℤ}  ⟶ {p:Pos(g)| Legal2(moves[(2 * n) - 1];p)} ))
Proof
Definitions occuring in Statement : 
strat2play: strat2play(g;n;s)
, 
win2strat: win2strat(g;n)
, 
play-len: ||moves||
, 
play-item: moves[i]
, 
sg-legal2: Legal2(x;y)
, 
sg-pos: Pos(g)
, 
simple-game: SimpleGame
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
multiply: n * m
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
win2strat: win2strat(g;n)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
false: False
, 
guard: {T}
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
Lemmas referenced : 
win2strat_wf, 
nat_plus_subtype_nat, 
nat_plus_wf, 
simple-game_wf, 
eq_int_wf, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-T-base, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
setElimination, 
rename, 
natural_numberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination, 
independent_pairFormation, 
intEquality, 
baseClosed, 
dependentIntersectionElimination, 
unionElimination, 
instantiate, 
cumulativity, 
productElimination, 
impliesFunctionality
Latex:
\mforall{}g:SimpleGame.  \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}s:win2strat(g;n).
    ((s  \mmember{}  win2strat(g;n  -  1))
    \mwedge{}  (s  \mmember{}  moves:\{f:strat2play(g;n  -  1;s)|  ||f||  =  (2  *  n)\}    {}\mrightarrow{}  \{p:Pos(g)|  Legal2(moves[(2  *  n)  -  1];p\000C)\}  ))
Date html generated:
2018_07_25-PM-01_32_17
Last ObjectModification:
2018_07_11-PM-00_23_50
Theory : co-recursion
Home
Index