Nuprl Lemma : win2strat-properties

g:SimpleGame. ∀n:ℕ+. ∀s:win2strat(g;n).
  ((s ∈ win2strat(g;n 1))
  ∧ (s ∈ moves:{f:strat2play(g;n 1;s)| ||f|| (2 n) ∈ ℤ}  ⟶ {p:Pos(g)| Legal2(moves[(2 n) 1];p)} ))


Proof




Definitions occuring in Statement :  strat2play: strat2play(g;n;s) win2strat: win2strat(g;n) play-len: ||moves|| play-item: moves[i] sg-legal2: Legal2(x;y) sg-pos: Pos(g) simple-game: SimpleGame nat_plus: + all: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] multiply: m subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] win2strat: win2strat(g;n) member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B nat_plus: + and: P ∧ Q cand: c∧ B false: False guard: {T} uimplies: supposing a implies:  Q prop: or: P ∨ Q sq_type: SQType(T) uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q not: ¬A rev_implies:  Q bfalse: ff
Lemmas referenced :  win2strat_wf nat_plus_subtype_nat nat_plus_wf simple-game_wf eq_int_wf less_than_transitivity1 le_weakening less_than_irreflexivity assert_wf bnot_wf not_wf equal-wf-T-base bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule setElimination rename natural_numberEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination dependent_functionElimination independent_functionElimination voidElimination independent_pairFormation intEquality baseClosed dependentIntersectionElimination unionElimination instantiate cumulativity productElimination impliesFunctionality

Latex:
\mforall{}g:SimpleGame.  \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}s:win2strat(g;n).
    ((s  \mmember{}  win2strat(g;n  -  1))
    \mwedge{}  (s  \mmember{}  moves:\{f:strat2play(g;n  -  1;s)|  ||f||  =  (2  *  n)\}    {}\mrightarrow{}  \{p:Pos(g)|  Legal2(moves[(2  *  n)  -  1];p\000C)\}  ))



Date html generated: 2018_07_25-PM-01_32_17
Last ObjectModification: 2018_07_11-PM-00_23_50

Theory : co-recursion


Home Index