Nuprl Lemma : sg-change-init_wf
∀[g:SimpleGame]. ∀[j:Pos(g)].  (g@j ∈ SimpleGame)
Proof
Definitions occuring in Statement : 
sg-change-init: g@j
, 
sg-pos: Pos(g)
, 
simple-game: SimpleGame
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
pi1: fst(t)
, 
sg-pos: Pos(g)
, 
spreadn: spread4, 
simple-game: SimpleGame
, 
sg-change-init: g@j
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
simple-game_wf, 
set_wf, 
subtype_rel_self, 
subtype_rel_dep_function, 
sg-pos_wf, 
subtype_rel-equal, 
sg-reachable_self, 
sg-reachable_wf
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
lambdaFormation, 
rename, 
setElimination, 
lambdaEquality, 
instantiate, 
dependent_set_memberEquality, 
independent_isectElimination, 
dependent_functionElimination, 
hypothesis, 
because_Cache, 
applyEquality, 
universeEquality, 
functionEquality, 
cumulativity, 
productEquality, 
independent_pairEquality, 
isectElimination, 
extract_by_obid, 
hypothesisEquality, 
setEquality, 
dependent_pairEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g:SimpleGame].  \mforall{}[j:Pos(g)].    (g@j  \mmember{}  SimpleGame)
Date html generated:
2018_07_25-PM-01_35_01
Last ObjectModification:
2018_06_20-PM-09_29_35
Theory : co-recursion
Home
Index