Nuprl Lemma : sg-change-init_wf

[g:SimpleGame]. ∀[j:Pos(g)].  (g@j ∈ SimpleGame)


Proof




Definitions occuring in Statement :  sg-change-init: g@j sg-pos: Pos(g) simple-game: SimpleGame uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a all: x:A. B[x] subtype_rel: A ⊆B prop: pi1: fst(t) sg-pos: Pos(g) spreadn: spread4 simple-game: SimpleGame sg-change-init: g@j member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  simple-game_wf set_wf subtype_rel_self subtype_rel_dep_function sg-pos_wf subtype_rel-equal sg-reachable_self sg-reachable_wf
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality lambdaFormation rename setElimination lambdaEquality instantiate dependent_set_memberEquality independent_isectElimination dependent_functionElimination hypothesis because_Cache applyEquality universeEquality functionEquality cumulativity productEquality independent_pairEquality isectElimination extract_by_obid hypothesisEquality setEquality dependent_pairEquality thin productElimination sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:SimpleGame].  \mforall{}[j:Pos(g)].    (g@j  \mmember{}  SimpleGame)



Date html generated: 2018_07_25-PM-01_35_01
Last ObjectModification: 2018_06_20-PM-09_29_35

Theory : co-recursion


Home Index