Nuprl Lemma : sg-reachable_self
∀[g:SimpleGame]. ∀x:Pos(g). sg-reachable(g;x;x)
Proof
Definitions occuring in Statement : 
sg-reachable: sg-reachable(g;x;y)
, 
sg-pos: Pos(g)
, 
simple-game: SimpleGame
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
not: ¬A
, 
false: False
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
subtract: n - m
, 
btrue: tt
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
pi2: snd(t)
, 
seq-item: s[i]
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
seq-nil: seq-nil()
, 
seq-cons: seq-cons(a;s)
, 
pi1: fst(t)
, 
seq-len: ||s||
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
sg-reachable: sg-reachable(g;x;y)
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
multiply-is-int-iff, 
nat_properties, 
nat_plus_properties, 
omega-shadow, 
minus-zero, 
mul-distributes-right, 
two-mul, 
one-mul, 
le_reflexive, 
simple-game_wf, 
nat_plus_subtype_nat, 
le-add-cancel2, 
int_subtype_base, 
set_subtype_base, 
le_weakening2, 
sg-legal2_wf, 
sq_stable__le, 
multiply_nat_wf, 
add_nat_wf, 
mul-associates, 
le_wf, 
mul_bounds_1a, 
sg-legal1_wf, 
squash_wf, 
all_wf, 
le-add-cancel-alt, 
zero-mul, 
add-mul-special, 
not-lt-2, 
decidable__lt, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-le-2, 
decidable__le, 
subtract_wf, 
lelt_wf, 
false_wf, 
seq-item_wf, 
equal_wf, 
seq-len_wf, 
nat_plus_wf, 
nat_wf, 
less_than_wf, 
seq-nil_wf, 
sg-pos_wf, 
seq-cons_wf
Rules used in proof : 
levelHypothesis, 
addLevel, 
closedConclusion, 
baseApply, 
promote_hyp, 
sqequalIntensionalEquality, 
equalitySymmetry, 
equalityTransitivity, 
functionEquality, 
intEquality, 
minusEquality, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
voidElimination, 
unionElimination, 
dependent_functionElimination, 
dependent_set_memberEquality, 
because_Cache, 
applyEquality, 
productEquality, 
rename, 
setElimination, 
multiplyEquality, 
addEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
independent_pairFormation, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
sqequalRule, 
dependent_pairFormation, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[g:SimpleGame].  \mforall{}x:Pos(g).  sg-reachable(g;x;x)
Date html generated:
2018_07_25-PM-01_33_50
Last ObjectModification:
2018_06_18-PM-05_03_41
Theory : co-recursion
Home
Index