Nuprl Lemma : sg-reachable_self

[g:SimpleGame]. ∀x:Pos(g). sg-reachable(g;x;x)


Proof




Definitions occuring in Statement :  sg-reachable: sg-reachable(g;x;y) sg-pos: Pos(g) simple-game: SimpleGame uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  so_apply: x[s] sq_stable: SqStable(P) guard: {T} so_lambda: λ2x.t[x] top: Top uimplies: supposing a uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) not: ¬A false: False le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} subtype_rel: A ⊆B nat_plus: + nat: prop: implies:  Q subtract: m btrue: tt eq_int: (i =z j) ifthenelse: if then else fi  pi2: snd(t) seq-item: s[i] true: True less_than': less_than'(a;b) squash: T less_than: a < b cand: c∧ B and: P ∧ Q seq-nil: seq-nil() seq-cons: seq-cons(a;s) pi1: fst(t) seq-len: ||s|| member: t ∈ T exists: x:A. B[x] sg-reachable: sg-reachable(g;x;y) all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  multiply-is-int-iff nat_properties nat_plus_properties omega-shadow minus-zero mul-distributes-right two-mul one-mul le_reflexive simple-game_wf nat_plus_subtype_nat le-add-cancel2 int_subtype_base set_subtype_base le_weakening2 sg-legal2_wf sq_stable__le multiply_nat_wf add_nat_wf mul-associates le_wf mul_bounds_1a sg-legal1_wf squash_wf all_wf le-add-cancel-alt zero-mul add-mul-special not-lt-2 decidable__lt le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-le-2 decidable__le subtract_wf lelt_wf false_wf seq-item_wf equal_wf seq-len_wf nat_plus_wf nat_wf less_than_wf seq-nil_wf sg-pos_wf seq-cons_wf
Rules used in proof :  levelHypothesis addLevel closedConclusion baseApply promote_hyp sqequalIntensionalEquality equalitySymmetry equalityTransitivity functionEquality intEquality minusEquality voidEquality isect_memberEquality lambdaEquality independent_isectElimination independent_functionElimination productElimination voidElimination unionElimination dependent_functionElimination dependent_set_memberEquality because_Cache applyEquality productEquality rename setElimination multiplyEquality addEquality imageElimination baseClosed imageMemberEquality natural_numberEquality independent_pairFormation hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut sqequalRule dependent_pairFormation lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[g:SimpleGame].  \mforall{}x:Pos(g).  sg-reachable(g;x;x)



Date html generated: 2018_07_25-PM-01_33_50
Last ObjectModification: 2018_06_18-PM-05_03_41

Theory : co-recursion


Home Index