Nuprl Lemma : coW-game-step-isom
∀[A:𝕌']
  ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]). ∀t:coW-dom(a.B[a];w). ∀b:coW-dom(a.B[a];w').
    sg-normalize(coW-game(a.B[a];coW-item(w;t);coW-item(w';b))) ≅ coW-game(a.B[a];w;w')@<copath-cons(t;())
                                                                                        , copath-cons(b;())
                                                                                        >
Proof
Definitions occuring in Statement : 
coW-game: coW-game(a.B[a];w;w')
, 
copath-cons: copath-cons(b;x)
, 
copath-nil: ()
, 
coW-item: coW-item(w;b)
, 
coW-dom: coW-dom(a.B[a];w)
, 
coW: coW(A;a.B[a])
, 
sg-normalize: sg-normalize(g)
, 
sg-change-init: g@j
, 
isom-games: g1 ≅ g2
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
universe: Type
Definitions unfolded in proof : 
isom-games: g1 ≅ g2
, 
sq_type: SQType(T)
, 
ge: i ≥ j 
, 
seq-comp: f o s
, 
seq-len: ||s||
, 
seq-item: s[i]
, 
sequence: sequence(T)
, 
copath-cons: copath-cons(b;x)
, 
copath-length: copath-length(p)
, 
copath-nil: ()
, 
coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q)
, 
sg-legal2: Legal2(x;y)
, 
copath: copath(a.B[a];w)
, 
sg-legal1: Legal1(x;y)
, 
less_than: a < b
, 
cand: A c∧ B
, 
nat_plus: ℕ+
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
guard: {T}
, 
nat: ℕ
, 
true: True
, 
top: Top
, 
subtract: n - m
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
sg-reachable: sg-reachable(g;x;y)
, 
pi2: snd(t)
, 
sg-init: InitialPos(g)
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
coW-game: coW-game(a.B[a];w;w')
, 
spreadn: spread4, 
sg-change-init: g@j
, 
sg-normalize: sg-normalize(g)
, 
pi1: fst(t)
, 
sg-pos: Pos(g)
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
copath-eta2, 
set_wf, 
sg-legal2-change-init, 
sg-legal2-normalize, 
sg-legal1-change-init, 
sg-legal1-normalize, 
exists_wf, 
equal-wf-T-base, 
mul_preserves_le, 
copathAgree-tl, 
le_antisymmetry_iff, 
subtype_base_sq, 
length-copath-tl, 
copath-tl-cons, 
coW-pos-agree_wf, 
int_seg_properties, 
seq-truncate-item, 
seq-len-truncate, 
add-subtract-cancel, 
int_seg_wf, 
seq-truncate_wf, 
subtype_rel-equal, 
copath-tl_wf, 
sg-init_wf, 
sg-pos-change-init, 
sg-pos-normalize, 
member-less_than, 
sq_stable__equal, 
sq_stable__less_than, 
sq_stable__and, 
copath-hd-cons, 
hd-copathAgree, 
coW-game-reachable, 
sg-change-init_wf, 
copath-hd_wf, 
length-copath-cons, 
and_wf, 
copathAgree-cons, 
or_wf, 
copathAgree_wf, 
copath-length_wf, 
nat_properties, 
nat_plus_properties, 
seq-comp-item, 
seq-comp-len, 
omega-shadow, 
minus-zero, 
mul-distributes-right, 
two-mul, 
one-mul, 
le_reflexive, 
iff_weakening_equal, 
copath_wf, 
subtype_rel_self, 
true_wf, 
nat_plus_subtype_nat, 
le-add-cancel2, 
int_subtype_base, 
set_subtype_base, 
le_weakening2, 
sg-legal2_wf, 
nat_plus_wf, 
sq_stable__le, 
multiply_nat_wf, 
add_nat_wf, 
mul-associates, 
le_wf, 
mul_bounds_1a, 
sg-legal1_wf, 
squash_wf, 
nat_wf, 
all_wf, 
le-add-cancel-alt, 
zero-mul, 
add-mul-special, 
not-lt-2, 
decidable__lt, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-le-2, 
decidable__le, 
subtract_wf, 
lelt_wf, 
false_wf, 
seq-item_wf, 
equal_wf, 
seq-len_wf, 
less_than_wf, 
seq-comp_wf, 
coW_wf, 
coW-dom_wf, 
sg-normalize_wf, 
sg-pos_wf, 
coW-item_wf, 
copath-nil_wf, 
coW-game_wf, 
sg-reachable_wf, 
copath-cons_wf
Rules used in proof : 
hyp_replacement, 
dependent_pairEquality, 
levelHypothesis, 
equalityUniverse, 
axiomEquality, 
applyLambdaEquality, 
inrFormation, 
inlFormation, 
promote_hyp, 
sqequalIntensionalEquality, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
multiplyEquality, 
intEquality, 
minusEquality, 
voidEquality, 
isect_memberEquality, 
addEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
unionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
natural_numberEquality, 
productEquality, 
spreadEquality, 
dependent_pairFormation, 
universeEquality, 
functionEquality, 
instantiate, 
cumulativity, 
functionExtensionality, 
because_Cache, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
independent_pairEquality, 
dependent_set_memberEquality, 
productElimination, 
rename, 
thin, 
setElimination, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
cut, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).  \mforall{}t:coW-dom(a.B[a];w).  \mforall{}b:coW-dom(a.B[a];w').
        sg-normalize(coW-game(a.B[a];coW-item(w;t);coW-item(w';b)))  \mcong{}
        coW-game(a.B[a];w;w')@<copath-cons(t;()),  copath-cons(b;())>
Date html generated:
2018_07_25-PM-01_48_44
Last ObjectModification:
2018_07_11-PM-00_26_57
Theory : co-recursion
Home
Index