Nuprl Lemma : coW-game-step-isom

[A:𝕌']
  ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]). ∀t:coW-dom(a.B[a];w). ∀b:coW-dom(a.B[a];w').
    sg-normalize(coW-game(a.B[a];coW-item(w;t);coW-item(w';b))) ≅ coW-game(a.B[a];w;w')@<copath-cons(t;())
                                                                                        copath-cons(b;())
                                                                                        >


Proof




Definitions occuring in Statement :  coW-game: coW-game(a.B[a];w;w') copath-cons: copath-cons(b;x) copath-nil: () coW-item: coW-item(w;b) coW-dom: coW-dom(a.B[a];w) coW: coW(A;a.B[a]) sg-normalize: sg-normalize(g) sg-change-init: g@j isom-games: g1 ≅ g2 uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] pair: <a, b> universe: Type
Definitions unfolded in proof :  isom-games: g1 ≅ g2 sq_type: SQType(T) ge: i ≥  seq-comp: s seq-len: ||s|| seq-item: s[i] sequence: sequence(T) copath-cons: copath-cons(b;x) copath-length: copath-length(p) copath-nil: () coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) sg-legal2: Legal2(x;y) copath: copath(a.B[a];w) sg-legal1: Legal1(x;y) less_than: a < b cand: c∧ B nat_plus: + squash: T sq_stable: SqStable(P) guard: {T} nat: true: True top: Top subtract: m uimplies: supposing a uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) implies:  Q not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} subtype_rel: A ⊆B and: P ∧ Q exists: x:A. B[x] sg-reachable: sg-reachable(g;x;y) pi2: snd(t) sg-init: InitialPos(g) prop: so_apply: x[s] so_lambda: λ2x.t[x] coW-game: coW-game(a.B[a];w;w') spreadn: spread4 sg-change-init: g@j sg-normalize: sg-normalize(g) pi1: fst(t) sg-pos: Pos(g) member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  copath-eta2 set_wf sg-legal2-change-init sg-legal2-normalize sg-legal1-change-init sg-legal1-normalize exists_wf equal-wf-T-base mul_preserves_le copathAgree-tl le_antisymmetry_iff subtype_base_sq length-copath-tl copath-tl-cons coW-pos-agree_wf int_seg_properties seq-truncate-item seq-len-truncate add-subtract-cancel int_seg_wf seq-truncate_wf subtype_rel-equal copath-tl_wf sg-init_wf sg-pos-change-init sg-pos-normalize member-less_than sq_stable__equal sq_stable__less_than sq_stable__and copath-hd-cons hd-copathAgree coW-game-reachable sg-change-init_wf copath-hd_wf length-copath-cons and_wf copathAgree-cons or_wf copathAgree_wf copath-length_wf nat_properties nat_plus_properties seq-comp-item seq-comp-len omega-shadow minus-zero mul-distributes-right two-mul one-mul le_reflexive iff_weakening_equal copath_wf subtype_rel_self true_wf nat_plus_subtype_nat le-add-cancel2 int_subtype_base set_subtype_base le_weakening2 sg-legal2_wf nat_plus_wf sq_stable__le multiply_nat_wf add_nat_wf mul-associates le_wf mul_bounds_1a sg-legal1_wf squash_wf nat_wf all_wf le-add-cancel-alt zero-mul add-mul-special not-lt-2 decidable__lt le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-le-2 decidable__le subtract_wf lelt_wf false_wf seq-item_wf equal_wf seq-len_wf less_than_wf seq-comp_wf coW_wf coW-dom_wf sg-normalize_wf sg-pos_wf coW-item_wf copath-nil_wf coW-game_wf sg-reachable_wf copath-cons_wf
Rules used in proof :  hyp_replacement dependent_pairEquality levelHypothesis equalityUniverse axiomEquality applyLambdaEquality inrFormation inlFormation promote_hyp sqequalIntensionalEquality equalitySymmetry equalityTransitivity imageElimination baseClosed imageMemberEquality multiplyEquality intEquality minusEquality voidEquality isect_memberEquality addEquality independent_isectElimination independent_functionElimination voidElimination unionElimination dependent_functionElimination independent_pairFormation natural_numberEquality productEquality spreadEquality dependent_pairFormation universeEquality functionEquality instantiate cumulativity functionExtensionality because_Cache hypothesis applyEquality hypothesisEquality isectElimination extract_by_obid introduction independent_pairEquality dependent_set_memberEquality productElimination rename thin setElimination sqequalRule sqequalHypSubstitution lambdaEquality cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).  \mforall{}t:coW-dom(a.B[a];w).  \mforall{}b:coW-dom(a.B[a];w').
        sg-normalize(coW-game(a.B[a];coW-item(w;t);coW-item(w';b)))  \mcong{}
        coW-game(a.B[a];w;w')@<copath-cons(t;()),  copath-cons(b;())>



Date html generated: 2018_07_25-PM-01_48_44
Last ObjectModification: 2018_07_11-PM-00_26_57

Theory : co-recursion


Home Index