Nuprl Lemma : coW-game-reachable

[A:𝕌']
  ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]). ∀p,q:Pos(coW-game(a.B[a];w;w')).
    (sg-reachable(coW-game(a.B[a];w;w');p;q)  coW-pos-agree(a.B[a];w;w';p;q))


Proof




Definitions occuring in Statement :  coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) coW-game: coW-game(a.B[a];w;w') coW: coW(A;a.B[a]) sg-reachable: sg-reachable(g;x;y) sg-pos: Pos(g) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  sg-legal2: Legal2(x;y) pi2: snd(t) sg-legal1: Legal1(x;y) coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) pi1: fst(t) sg-pos: Pos(g) coW-game: coW-game(a.B[a];w;w') ge: i ≥  cand: c∧ B nequal: a ≠ b ∈  int_nzero: -o sq_type: SQType(T) less_than: a < b sq_stable: SqStable(P) less_than': less_than'(a;b) top: Top subtract: m uiff: uiff(P;Q) not: ¬A or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k int_seg: {i..j-} nat: nat_plus: + false: False le: A ≤ B rev_implies:  Q iff: ⇐⇒ Q guard: {T} uimplies: supposing a subtype_rel: A ⊆B true: True so_apply: x[s] so_lambda: λ2x.t[x] prop: squash: T member: t ∈ T and: P ∧ Q exists: x:A. B[x] sg-reachable: sg-reachable(g;x;y) implies:  Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  copathAgree_refl copathAgree_wf copath_wf and_wf copath-length_wf sq_stable__coW-pos-agree add-is-int-iff not-equal-implies-less add_functionality_wrt_eq mul-commutes equal-wf-T-base or_wf div_bounds_1 rem_bounds_1 nequal_wf equal-wf-base div_rem_sum le_weakening coW-pos-agree_transitivity coW-pos-agree_refl subtype_base_sq seq-truncate-item seq-len-truncate le_antisymmetry_iff seq-truncate_wf not-equal-2 decidable__int_equal nat_properties nat_plus_properties omega-shadow minus-zero mul-distributes-right two-mul one-mul le_reflexive primrec-wf2 set_wf le-add-cancel-alt zero-mul add-mul-special add-zero minus-minus zero-add not-le-2 decidable__le int_subtype_base set_subtype_base sq_stable__le multiply_nat_wf add_nat_wf le-add-cancel mul-associates minus-add nat_plus_subtype_nat mul_bounds_1a lelt_wf le-add-cancel2 add-commutes add_functionality_wrt_le less-iff-le minus-one-mul-top add-swap minus-one-mul add-associates condition-implies-le not-lt-2 false_wf decidable__lt equal_wf le_weakening2 subtract_wf sequence_wf le_wf sg-legal1_wf nat_wf seq-item_wf sg-legal2_wf seq-len_wf less_than_wf nat_plus_wf all_wf less_than_irreflexivity less_than_transitivity1 sg-reachable_wf iff_weakening_equal subtype_rel_self coW_wf coW-game_wf sg-pos_wf true_wf squash_wf coW-pos-agree_wf
Rules used in proof :  applyLambdaEquality hyp_replacement levelHypothesis inrFormation inlFormation remainderEquality closedConclusion baseApply productEquality divideEquality addLevel intEquality voidEquality isect_memberEquality minusEquality unionElimination promote_hyp sqequalIntensionalEquality dependent_pairFormation dependent_functionElimination independent_pairFormation dependent_set_memberEquality addEquality functionExtensionality rename setElimination multiplyEquality voidElimination independent_functionElimination independent_isectElimination baseClosed imageMemberEquality natural_numberEquality because_Cache universeEquality functionEquality sqequalRule cumulativity equalitySymmetry hypothesis equalityTransitivity hypothesisEquality isectElimination extract_by_obid introduction imageElimination lambdaEquality instantiate applyEquality cut thin productElimination sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).  \mforall{}p,q:Pos(coW-game(a.B[a];w;w')).
        (sg-reachable(coW-game(a.B[a];w;w');p;q)  {}\mRightarrow{}  coW-pos-agree(a.B[a];w;w';p;q))



Date html generated: 2018_07_25-PM-01_48_21
Last ObjectModification: 2018_06_20-PM-03_17_30

Theory : co-recursion


Home Index