Nuprl Lemma : coW-game-reachable
∀[A:𝕌']
  ∀B:A ⟶ Type. ∀w,w':coW(A;a.B[a]). ∀p,q:Pos(coW-game(a.B[a];w;w')).
    (sg-reachable(coW-game(a.B[a];w;w');p;q) 
⇒ coW-pos-agree(a.B[a];w;w';p;q))
Proof
Definitions occuring in Statement : 
coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q)
, 
coW-game: coW-game(a.B[a];w;w')
, 
coW: coW(A;a.B[a])
, 
sg-reachable: sg-reachable(g;x;y)
, 
sg-pos: Pos(g)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
sg-legal2: Legal2(x;y)
, 
pi2: snd(t)
, 
sg-legal1: Legal1(x;y)
, 
coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q)
, 
pi1: fst(t)
, 
sg-pos: Pos(g)
, 
coW-game: coW-game(a.B[a];w;w')
, 
ge: i ≥ j 
, 
cand: A c∧ B
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
sq_stable: SqStable(P)
, 
less_than': less_than'(a;b)
, 
top: Top
, 
subtract: n - m
, 
uiff: uiff(P;Q)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
false: False
, 
le: A ≤ B
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
true: True
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
squash: ↓T
, 
member: t ∈ T
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
sg-reachable: sg-reachable(g;x;y)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
copathAgree_refl, 
copathAgree_wf, 
copath_wf, 
and_wf, 
copath-length_wf, 
sq_stable__coW-pos-agree, 
add-is-int-iff, 
not-equal-implies-less, 
add_functionality_wrt_eq, 
mul-commutes, 
equal-wf-T-base, 
or_wf, 
div_bounds_1, 
rem_bounds_1, 
nequal_wf, 
equal-wf-base, 
div_rem_sum, 
le_weakening, 
coW-pos-agree_transitivity, 
coW-pos-agree_refl, 
subtype_base_sq, 
seq-truncate-item, 
seq-len-truncate, 
le_antisymmetry_iff, 
seq-truncate_wf, 
not-equal-2, 
decidable__int_equal, 
nat_properties, 
nat_plus_properties, 
omega-shadow, 
minus-zero, 
mul-distributes-right, 
two-mul, 
one-mul, 
le_reflexive, 
primrec-wf2, 
set_wf, 
le-add-cancel-alt, 
zero-mul, 
add-mul-special, 
add-zero, 
minus-minus, 
zero-add, 
not-le-2, 
decidable__le, 
int_subtype_base, 
set_subtype_base, 
sq_stable__le, 
multiply_nat_wf, 
add_nat_wf, 
le-add-cancel, 
mul-associates, 
minus-add, 
nat_plus_subtype_nat, 
mul_bounds_1a, 
lelt_wf, 
le-add-cancel2, 
add-commutes, 
add_functionality_wrt_le, 
less-iff-le, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
add-associates, 
condition-implies-le, 
not-lt-2, 
false_wf, 
decidable__lt, 
equal_wf, 
le_weakening2, 
subtract_wf, 
sequence_wf, 
le_wf, 
sg-legal1_wf, 
nat_wf, 
seq-item_wf, 
sg-legal2_wf, 
seq-len_wf, 
less_than_wf, 
nat_plus_wf, 
all_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
sg-reachable_wf, 
iff_weakening_equal, 
subtype_rel_self, 
coW_wf, 
coW-game_wf, 
sg-pos_wf, 
true_wf, 
squash_wf, 
coW-pos-agree_wf
Rules used in proof : 
applyLambdaEquality, 
hyp_replacement, 
levelHypothesis, 
inrFormation, 
inlFormation, 
remainderEquality, 
closedConclusion, 
baseApply, 
productEquality, 
divideEquality, 
addLevel, 
intEquality, 
voidEquality, 
isect_memberEquality, 
minusEquality, 
unionElimination, 
promote_hyp, 
sqequalIntensionalEquality, 
dependent_pairFormation, 
dependent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
addEquality, 
functionExtensionality, 
rename, 
setElimination, 
multiplyEquality, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
because_Cache, 
universeEquality, 
functionEquality, 
sqequalRule, 
cumulativity, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
imageElimination, 
lambdaEquality, 
instantiate, 
applyEquality, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}']
    \mforall{}B:A  {}\mrightarrow{}  Type.  \mforall{}w,w':coW(A;a.B[a]).  \mforall{}p,q:Pos(coW-game(a.B[a];w;w')).
        (sg-reachable(coW-game(a.B[a];w;w');p;q)  {}\mRightarrow{}  coW-pos-agree(a.B[a];w;w';p;q))
Date html generated:
2018_07_25-PM-01_48_21
Last ObjectModification:
2018_06_20-PM-03_17_30
Theory : co-recursion
Home
Index