Nuprl Lemma : coW-pos-agree_transitivity

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w,w':coW(A;a.B[a])].
  ∀p,q,r:Pos(coW-game(a.B[a];w;w')).
    (coW-pos-agree(a.B[a];w;w';p;q)  coW-pos-agree(a.B[a];w;w';q;r)  coW-pos-agree(a.B[a];w;w';p;r))


Proof




Definitions occuring in Statement :  coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) coW-game: coW-game(a.B[a];w;w') coW: coW(A;a.B[a]) sg-pos: Pos(g) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] prop: squash: T uimplies: supposing a guard: {T} sq_stable: SqStable(P) member: t ∈ T le: A ≤ B cand: c∧ B and: P ∧ Q pi1: fst(t) sg-pos: Pos(g) coW-game: coW-game(a.B[a];w;w') coW-pos-agree: coW-pos-agree(a.B[a];w;w';p;q) implies:  Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  copathAgree_transitivity coW_wf coW-game_wf sg-pos_wf coW-pos-agree_wf le_transitivity sq_stable__le
Rules used in proof :  dependent_functionElimination universeEquality functionEquality cumulativity instantiate applyEquality lambdaEquality independent_pairFormation imageElimination baseClosed hypothesisEquality imageMemberEquality independent_isectElimination independent_functionElimination isectElimination extract_by_obid introduction hypothesis cut thin productElimination sqequalRule sqequalHypSubstitution lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w,w':coW(A;a.B[a])].
    \mforall{}p,q,r:Pos(coW-game(a.B[a];w;w')).
        (coW-pos-agree(a.B[a];w;w';p;q)
        {}\mRightarrow{}  coW-pos-agree(a.B[a];w;w';q;r)
        {}\mRightarrow{}  coW-pos-agree(a.B[a];w;w';p;r))



Date html generated: 2018_07_25-PM-01_43_25
Last ObjectModification: 2018_06_20-PM-02_47_33

Theory : co-recursion


Home Index