Nuprl Lemma : le_transitivity
∀[x,y,z:ℤ].  (x ≤ z) supposing ((y ≤ z) and (x ≤ y))
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
rev_uimplies: rev_uimplies(P;Q)
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
squash: ↓T
, 
subtract: n - m
, 
top: Top
, 
true: True
Lemmas referenced : 
le-iff-nonneg, 
add-nonneg, 
subtract_wf, 
less_than'_wf, 
le_wf, 
true_wf, 
squash_wf, 
zero-add, 
zero-mul, 
add-mul-special, 
add-swap, 
add-associates, 
add-commutes, 
minus-one-mul
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
dependent_functionElimination, 
because_Cache, 
intEquality, 
isect_memberFormation, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
applyEquality, 
hyp_replacement, 
natural_numberEquality, 
minusEquality, 
multiplyEquality, 
addEquality, 
voidEquality
Latex:
\mforall{}[x,y,z:\mBbbZ{}].    (x  \mleq{}  z)  supposing  ((y  \mleq{}  z)  and  (x  \mleq{}  y))
Date html generated:
2019_06_20-AM-11_22_59
Last ObjectModification:
2018_08_01-PM-04_17_48
Theory : arithmetic
Home
Index