Nuprl Lemma : le-iff-nonneg
∀[x,y:ℤ].  uiff(x ≤ y;0 ≤ (y - x))
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtract: n - m
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
Lemmas referenced : 
minus-one-mul, 
minus-add, 
minus-minus, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
less_than_wf, 
subtract_wf, 
not_wf, 
less-iff-positive, 
uiff_wf, 
iff_weakening_uiff, 
le_wf, 
not-lt, 
less_than'_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
minusEquality, 
addEquality, 
natural_numberEquality, 
dependent_functionElimination, 
addLevel, 
productElimination, 
independent_isectElimination, 
cumulativity, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality
Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(x  \mleq{}  y;0  \mleq{}  (y  -  x))
Date html generated:
2016_05_13-PM-03_29_53
Last ObjectModification:
2015_12_26-AM-09_47_34
Theory : arithmetic
Home
Index