Nuprl Lemma : le-iff-nonneg

[x,y:ℤ].  uiff(x ≤ y;0 ≤ (y x))


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B subtract: m natural_number: $n int:
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T not: ¬A implies:  Q false: False subtract: m uall: [x:A]. B[x] subtype_rel: A ⊆B top: Top prop: all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B
Lemmas referenced :  minus-one-mul minus-add minus-minus zero-add minus-one-mul-top add-commutes less_than_wf subtract_wf not_wf less-iff-positive uiff_wf iff_weakening_uiff le_wf not-lt less_than'_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation isect_memberFormation introduction lambdaFormation thin sqequalHypSubstitution hypothesis independent_functionElimination sqequalRule lemma_by_obid isectElimination hypothesisEquality applyEquality lambdaEquality isect_memberEquality voidElimination voidEquality because_Cache minusEquality addEquality natural_numberEquality dependent_functionElimination addLevel productElimination independent_isectElimination cumulativity independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry intEquality

Latex:
\mforall{}[x,y:\mBbbZ{}].    uiff(x  \mleq{}  y;0  \mleq{}  (y  -  x))



Date html generated: 2016_05_13-PM-03_29_53
Last ObjectModification: 2015_12_26-AM-09_47_34

Theory : arithmetic


Home Index