Nuprl Lemma : copathAgree_transitivity
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].
  ∀x,y,z:copath(a.B[a];w).
    ((copath-length(x) ≤ copath-length(y))
    
⇒ (copath-length(y) ≤ copath-length(z))
    
⇒ copathAgree(a.B[a];w;x;y)
    
⇒ copathAgree(a.B[a];w;y;z)
    
⇒ copathAgree(a.B[a];w;x;z))
Proof
Definitions occuring in Statement : 
copathAgree: copathAgree(a.B[a];w;x;y)
, 
copath-length: copath-length(p)
, 
copath: copath(a.B[a];w)
, 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
sq_stable: SqStable(P)
, 
gt: i > j
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
le: A ≤ B
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
prop: ℙ
, 
false: False
, 
not: ¬A
, 
squash: ↓T
, 
true: True
, 
top: Top
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
less_than: a < b
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat: ℕ
, 
member: t ∈ T
, 
pi1: fst(t)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
copath: copath(a.B[a];w)
, 
copath-length: copath-length(p)
, 
copathAgree: copathAgree(a.B[a];w;x;y)
Lemmas referenced : 
sq_stable__le, 
coPathAgree_le, 
coPathAgree_transitivity, 
coW_wf, 
coPath_wf, 
nat_wf, 
le_wf, 
not-gt-2, 
le_weakening2, 
coPath_subtype, 
coPathAgree_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
not-lt, 
less_than_wf, 
top_wf, 
decidable__lt
Rules used in proof : 
universeEquality, 
functionEquality, 
cumulativity, 
instantiate, 
productEquality, 
applyEquality, 
lambdaEquality, 
lessEquality, 
spreadEquality, 
independent_isectElimination, 
independent_functionElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
voidEquality, 
voidElimination, 
independent_pairFormation, 
isect_memberEquality, 
sqequalAxiom, 
isectElimination, 
lessCases, 
because_Cache, 
unionElimination, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
sqequalHypSubstitution, 
thin, 
productElimination, 
lambdaFormation, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].
    \mforall{}x,y,z:copath(a.B[a];w).
        ((copath-length(x)  \mleq{}  copath-length(y))
        {}\mRightarrow{}  (copath-length(y)  \mleq{}  copath-length(z))
        {}\mRightarrow{}  copathAgree(a.B[a];w;x;y)
        {}\mRightarrow{}  copathAgree(a.B[a];w;y;z)
        {}\mRightarrow{}  copathAgree(a.B[a];w;x;z))
Date html generated:
2018_07_25-PM-01_40_52
Last ObjectModification:
2018_06_16-AM-11_57_20
Theory : co-recursion
Home
Index