Nuprl Lemma : copathAgree_transitivity

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].
  ∀x,y,z:copath(a.B[a];w).
    ((copath-length(x) ≤ copath-length(y))
     (copath-length(y) ≤ copath-length(z))
     copathAgree(a.B[a];w;x;y)
     copathAgree(a.B[a];w;y;z)
     copathAgree(a.B[a];w;x;z))


Proof




Definitions occuring in Statement :  copathAgree: copathAgree(a.B[a];w;x;y) copath-length: copath-length(p) copath: copath(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  sq_stable: SqStable(P) gt: i > j subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2x.t[x] guard: {T} le: A ≤ B uimplies: supposing a uiff: uiff(P;Q) prop: false: False not: ¬A squash: T true: True top: Top less_than': less_than'(a;b) and: P ∧ Q less_than: a < b or: P ∨ Q decidable: Dec(P) nat: member: t ∈ T pi1: fst(t) implies:  Q all: x:A. B[x] uall: [x:A]. B[x] copath: copath(a.B[a];w) copath-length: copath-length(p) copathAgree: copathAgree(a.B[a];w;x;y)
Lemmas referenced :  sq_stable__le coPathAgree_le coPathAgree_transitivity coW_wf coPath_wf nat_wf le_wf not-gt-2 le_weakening2 coPath_subtype coPathAgree_wf less_than_irreflexivity less_than_transitivity1 not-lt less_than_wf top_wf decidable__lt
Rules used in proof :  universeEquality functionEquality cumulativity instantiate productEquality applyEquality lambdaEquality lessEquality spreadEquality independent_isectElimination independent_functionElimination imageElimination baseClosed imageMemberEquality natural_numberEquality voidEquality voidElimination independent_pairFormation isect_memberEquality sqequalAxiom isectElimination lessCases because_Cache unionElimination hypothesis hypothesisEquality rename setElimination dependent_functionElimination extract_by_obid introduction cut sqequalHypSubstitution thin productElimination lambdaFormation isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].
    \mforall{}x,y,z:copath(a.B[a];w).
        ((copath-length(x)  \mleq{}  copath-length(y))
        {}\mRightarrow{}  (copath-length(y)  \mleq{}  copath-length(z))
        {}\mRightarrow{}  copathAgree(a.B[a];w;x;y)
        {}\mRightarrow{}  copathAgree(a.B[a];w;y;z)
        {}\mRightarrow{}  copathAgree(a.B[a];w;x;z))



Date html generated: 2018_07_25-PM-01_40_52
Last ObjectModification: 2018_06_16-AM-11_57_20

Theory : co-recursion


Home Index