Nuprl Lemma : coPath_subtype

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[n:ℕ]. ∀[w:coW(A;a.B[a])]. ∀[m:ℕ].  coPath(a.B[a];w;m) ⊆coPath(a.B[a];w;n) supposing n ≤ m


Proof




Definitions occuring in Statement :  coPath: coPath(a.B[a];w;n) coW: coW(A;a.B[a]) nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] coPath: coPath(a.B[a];w;n) eq_int: (i =z j) all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  top: Top bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b le: A ≤ B less_than': less_than'(a;b) not: ¬A int_upper: {i...} decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) squash: T subtract: m true: True nequal: a ≠ b ∈ 
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf le_wf coW_wf btrue_wf bool_wf eqtt_to_assert assert_of_eq_int eq_int_wf top_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int upper_subtype_nat false_wf nequal-le-implies zero-add coW-dom_wf coPath_wf subtract_wf decidable__le not-le-2 sq_stable__le condition-implies-le minus-one-mul minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le le-add-cancel coW-item_wf nat_wf not-ge-2 less-iff-le add-zero le_weakening subtype_rel_product not-equal-2 le-add-cancel-alt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache instantiate cumulativity applyEquality unionElimination equalityElimination productElimination voidEquality dependent_pairFormation promote_hyp hypothesis_subsumption independent_pairFormation dependent_set_memberEquality productEquality functionExtensionality imageMemberEquality baseClosed imageElimination addEquality intEquality minusEquality functionEquality universeEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[m:\mBbbN{}].
    coPath(a.B[a];w;m)  \msubseteq{}r  coPath(a.B[a];w;n)  supposing  n  \mleq{}  m



Date html generated: 2018_07_25-PM-01_37_52
Last ObjectModification: 2018_06_01-AM-09_55_02

Theory : co-recursion


Home Index